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The dynamics of a swirling flow in a pipe and
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This paper provides a new study of the axisymmetric vortex breakdown phenomenon.
Our approach is based on a thorough investigation of the axisymmetric unsteady
Euler equations which describe the dynamics of a swirling flow in a finite-length
constant-area pipe. We study the stability characteristics as well as the time-asymptotic
behaviour of the flow as it relates to the steady-state solutions. The results are
established through a rigorous mathematical analysis and provide a solid theoretical
understanding of the dynamics of an axisymmetric swirling flow. The stability and
steady-state analyses suggest a consistent explanation of the mechanism leading to
the axisymmetric vortex breakdown phenomenon in high-Reynolds-number swirling
flows in a pipe. It is an evolution from an initial columnar swirling flow to another
relatively stable equilibrium state which represents a flow around a separation zone.
This evolution is the result of the loss of stability of the base columnar state when
the swirl ratio of the incoming flow is near or above the critical level.

1. Introduction and mathematical model
1.1. Introduction

The term ‘vortex breakdown’ commonly refers to the abrupt and drastic change
of structure which may occur under certain conditions in high-Reynolds-number
swirling flows. This phenomenon is characterized by a sudden axial deceleration, that
occurs above a certain level of swirl, leading to the formation of a free stagnation
point which is followed by a separation region with turbulence behind it. Depending
on the level of swirl (at a given Reynolds number) the breakdown may adopt a
range of shapes, from asymmetric spiral waves to a nearly axisymmetric separation
zone.

The scientific interest in explaining this strongly nonlinear phenomenon has led
to many experimental, numerical and theoretical studies, and several review papers
on this subject have been presented, including the reports by Hall (1972), Leibovich
(1978, 1984), Escudier (1988) and Sarpkaya (1995). Although there has been extensive
research, the fundamental nature of these phenomena still remains largely experimen-
tally and theoretically unexplained.

The continued research toward understanding vortex breakdown has mainly been
motivated by the field of aeronautics, mostly to reduce its harmful effects on slender
aircraft configurations flying at high angles of attack (see Peckham & Atkinson 1957
and Lambourne & Bryer 1962). For a confined swirling flow through a pipe or in
a closed container, vortex breakdown may have potential technological applications
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Figure 1. The bifurcation diagram: summary of previous theoretical studies.

such as flame stabilization in combustion chambers (see Escudier 1988). Vortex
breakdown may also occur in hydrocyclon separators as well as in swirling jets
behind nozzles, and is also common to the motion of atmospheric vortices such as
tornados. Therefore, the ability to understand the complicated structures that develop
as a consequence of vortex breakdown and to predict the flow conditions that lead
to these phenomena would be essential for the future utilization of swirling flows in
the design of advanced aerodynamic and hydromechanical devices where swirl has a
dominant influence.

In this paper we concentrate on the axisymmetric breakdown phenomenon in a
swirling flow in a constant-area pipe. A summary of previous theoretical analyses
of this phenomenon is presented in the bifurcation diagram in figure 1. In this
figure the vertical axis is the minimum of the axial velocity component, w, along the
vortex centreline, the x-axis, that may be found in various steady-state solutions. The
horizontal axis is the swirl level ω of the incoming flow to the pipe. It should be
emphasized that when min(w(x, 0)) 6 0 a stagnation point appears, followed by a
separation zone.

In the case of an inviscid incompressible flow, we consider a branch of steady-state
solutions describing a columnar axisymmetric swirling base flow throughout the pipe
for any swirl level, ω, where the axial, radial and circumferential velocity components
are given by w = w0(r), u = 0 and v = ωv0(r), respectively. Here, r is the radial
distance from the vortex centreline. For this branch of solutions, min(w(x, 0)) = w0(0)
for every ω. Along this branch Squire (1960) and Benjamin (1962) identified a certain
critical level of swirl, ωB , where an infinitely long infinitesimal axisymmetric standing
wave may appear (see figure 1). The critical-state theory of Benjamin (1962) relates the
dynamical characteristics of a swirling columnar flow to its ability to sustain standing
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axisymmetric small-disturbance waves. Supercritical vortex flows have low swirl ratios
and are unable to support such waves, while subcritical flows having high swirl ratios
can. Benjamin (1962) also used a variational principle for the flow equations and
described the axisymmetric breakdown in a rather simple model, as a transition from
an upstream supercritical columnar vortex flow to a downstream subcritical columnar
flow, in analogy to the hydraulic jump in shallow water. Benjamin’s theory predicts
a change in the total head between these two columnar states which represents a
change in mechanical energy.

Randall & Leibovich (1973) showed that the critical state is a singular state of the
inviscid steady equations. Using a weakly nonlinear analysis they found a branch of
steady-state axisymmetric solutions of the Euler equations which bifurcate from the
columnar branch when ω < ωB . These solutions describe a standing solitary wave
that develops in a base swirling flow in an infinitely long straight pipe. Leibovich &
Kribus (1990) showed, using numerical continuation methods, that this standing wave
becomes larger and a closed separation zone may appear as the swirl is decreased
from the critical level ωB to zero. Since the flow in the separation zone is not connected
by streamlines with the upstream flow, Leibovich & Kribus (1990) used the analytical
continuation model to describe the flow inside the separation zone. For this branch
of solutions, reversed flow develops in the separation zone and min(w(x, 0)) becomes
negative as ω is reduced from ωB to zero (see figure 1).

In another inviscid steady-state approach, Escudier & Keller (1983) and Keller,
Egli & Exley (1985) described the axisymmetric vortex breakdown in an infinitely
long straight pipe as an open stagnation zone of free boundaries that appears in the
base vortex flow. Their solution describes a transition from a base upstream columnar
state to another, downstream, columnar state that has the same ‘flow force’ (resulting
from the conservation of axial momentum along the pipe); both states are solutions
of the same columnar problem. However, a careful understanding of this solution
shows that when the vortical core radius of the base (upstream) state is fixed, the
solution is limited only to a specific value of the swirl, defined later in this paper as
ω0, where ω0 < ωB . For this special solution min(w(x, 0)) = 0 (see figure 1).

The effect of a changing the cross-sectional area of a tube on a stream of rotating
fluid was studied in the work of Batchelor (1967). To the best of our knowledge,
Batchelor (1967) is the first to notice that the solution families for inviscid swirling
flows in a diverging pipe have a fold as swirl is increased. Batchelor’s work has
motivated a recent theoretical study by Buntine & Saffman (1995) who examined the
development of inviscid steady swirling flows in a finite-length diverging pipe. They
investigated the dependence of solutions on inlet and outlet boundary conditions
and flow geometry. Their numerical computations result in an interesting bifurcation
diagram when a parallel flow condition was imposed along the pipe outlet (see figure
1). There exists a limit point of swirl where the branch of solutions folds. Buntine &
Saffman (1995) claimed that when a stagnation point appears along the pipe outlet
non-regular solutions that should describe a separation zone must develop, and the
flow inside the separation zone cannot be determined by the inlet conditions. They
also raised the need to study the stability of the axisymmetric and inviscid flows in
the vicinity of the limit point to clarify the influence of upstream conditions.

Hall (1967, 1972) used the quasi-cylindrical approximation to the steady and ax-
isymmetric Navier–Stokes equations to describe a swirling flow with small streamwise
gradients, from which he derived a parabolic equation that can be integrated along
the pipe axis. He found that the flow along the pipe axis decelerates as the swirl
increases (see figure 1) and there is a certain level of swirl above which no solution
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of the parabolic equation can be found. This indicates that the assumption of small
streamwise gradients is no longer valid, and vortex breakdown should be inferred, in
analogy to the separation of a boundary layer.

Recent numerical computations by Beran & Culick (1992) have revealed a compli-
cated bifurcation diagram of solutions of the steady and axisymmetric Navier–Stokes
equations (see figure 1). They found that there exist two limit points of swirl when
the Reynolds number is large enough. These limit points connect three branches of
steady-state solutions of different types. Along the branch of solutions (a) the incom-
ing swirl increases up to the first limit point and they describe a near columnar flow
throughout the pipe. The branch of solutions (b) begins at the first limit point and
ends at the secondary limit point; along this branch the incoming swirl is reduced.
Solutions along the fold describe a swirling flow with a localized standing wave that
develops into a localized separation zone as the swirl approaches the secondary limit
point. The branch of solutions (c) starts from the secondary limit point; along that
branch the incoming swirl is increased and solutions describe a large separation zone.
Beran & Culick (1992) indicated that there may be a possible relation between the
first limit point in their computations and the critical swirl as defined by Benjamin
(1962). They also conducted numerical computations using the quasi-cylindrical ap-
proximation of Hall (1967) and found a singular behaviour as the swirl approaches
the first limit point.

More recently, Lopez (1994) and Beran (1994) studied the solutions of the un-
steady axisymmetric Navier–Stokes equations. Both of these analyses showed that
the aforementioned branches of solutions (a) and (c) are stable to small axisymmetric
disturbances, whereas the solutions along (b), in the fold, are unstable. Steady-state
solutions along the branch (b) cannot develop in a dynamical process starting from
any initial swirling flow. Moreover, starting from solutions along the fold the flow
may evolve into one of the solutions along branches (a) or (c).

The stability analyses of rotating flows study the tendency of imposed small
disturbances to grow or decay in time and space. The analyses of Rayleigh (1916),
Howard & Gupta (1962), Lessen, Singh & Paillet (1974) and Leibovich & Stewartson
(1983) defined several stability criteria relating to axisymmetric and general three-
dimensional disturbances. It is found, for example, that a vortex with a large rotational
core (the ‘Q-Vortex’ model) is stable to axisymmetric perturbations when the swirl
ratio is greater than 0.403, and is unstable to helical perturbations only when the swirl
ratio is less than about 1.6. A review of vortex stability criteria is given in Leibovich
(1984). It is important to note that the relation between vortex breakdown and vortex
stability is yet unclear. Leibovich (1984) pointed out that breakdown can occur in a
vortex flow with just a little sign of instability and a vortex flow can become unstable
without any breakdown phenomenon.

The summary of theoretical studies as presented above and in figure 1 indicates that
there may be a possible relation between the critical swirl of the inviscid theory and
vortex breakdown. Specifically, the inviscid theories of Benjamin (1962), Leibovich
& Kribus (1990) and Buntine & Saffman (1995) show some correlation with the
viscous computations of Hall (1972) and Beran & Culick (1992). However, figure 1
demonstrates that large gaps still exist between the various theoretical approaches
and the numerical computations. Specifically, the relation between the solutions of
Leibovich & Kribus (1990) and the special solution of Keller et al. (1985) is not clear.
Moreover, the steady-state inviscid analyses do not provide insight into the special
behaviour of the numerical solutions of the axisymmetric Navier–Stokes equations
of Beran & Culick (1992), Beran (1994) and Lopez (1994). The relation between
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the critical swirl and the first limit point as suggested by Beran & Culick (1992) is
not fully understood and there is no explanation for the existence of the secondary
limit point that appears in the viscous computations. It should also be emphasized
that none of the known stability analyses can shed any light on the specific stability
characteristics of solutions of the axisymmetric Navier–Stokes equations as found in
the numerical solutions of Beran (1994) and Lopez (1994).

The breakdown of vortex cores is a remarkable feature of swirling flows and
is still a basic, largely unexplained, phenomenon. Although several explanations of
vortex breakdown have been proposed, a consistent description of this complicated
phenomenon has not yet been provided. Also, the relation between the various
theoretical and numerical solutions is not completely clear. A theoretical approach
that clarifies the physical mechanism leading to axisymmetric vortex breakdown
and that provides the conditions for which the various solutions may appear in a
numerical simulation or experiment has never been derived, and is of great scientific
and technological importance.

The objective of this paper is to present a new study of the axisymmetric vortex
breakdown phenomenon. Our approach is based on a thorough investigation of the
dynamics of an axisymmetric swirling flow in a finite-length constant-area pipe as
described by the axisymmetric unsteady Euler equations (§1.2). We consider certain
boundary conditions that may reflect the physical situation. Along the pipe inlet we
specify for all time the axial and circumferential velocity components as well as the
azimuthal vorticity. We allow the inlet flow a degree of freedom to develop a radial
velocity, to reflect the upstream influence by disturbances that have the tendency to
cast such an influence. Along the pipe outlet we pose a no-radial-flow state. We also
consider an initial state that describes a perturbed columnar flow along the pipe. We
study the stability characteristics as well as the time-asymptotic behaviour as it is
related to the steady-state solutions. The results are established through a rigorous
mathematical analysis and provide a solid theoretical understanding of the dynamics
of an axisymmetric swirling flow in a pipe.

The inlet conditions described above reflect a specific vortex state. In the physical
situation this vortex state is generated by a certain device and the mechanism of
the vortex generation is always due to strong viscous effects. On the other hand, the
mechanism leading to vortex breakdown in high-Reynolds-number flows is believed
to be related mainly to inviscid effects. Therefore, a proper theoretical approach to
study the problem may separate the two issues. In this paper we concentrate on the
vortex breakdown problem. The interaction between the vortex generator and the
vortex breakdown phenomenon should be considered in a future study.

In this study we specify the vortex state at the pipe inlet. This condition may
provide a realistic approximation of the flow state at the exit of a vortex generator
(see, for example, the experimental results of Bruecker & Althaus 1995). In most
of the experimental apparatuses a slightly diverging pipe was used to promote the
appearance of the breakdown phenomena by creating an adverse pressure gradient.
The slightly diverging pipe does not allow disturbances in the flow to propagate
upstream and change the inlet conditions. Our inlet conditions may reflect the physics
of such a case even though a straight pipe is used. The relation between the slightly
diverging pipe case and the straight pipe case can be established using the same
analysis methods as described in this paper.

It should also be noticed here that the numerical simulations by Salas & Kuruvila
(1989), Beran & Culick (1990), Lopez (1994), Beran (1994) and Darmofal (1996) and
some of the theoretical studies (Buntine & Saffman 1995) considered similar boundary
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conditions to those used in this paper. A good correlation was found between the
results of the axisymmetric simulations and the experimental data (see Darmofal
1996). These studies revealed the dynamics of swirling flows and the evolution of
the axisymmetric vortex breakdown in a pipe and our theoretical results provide an
explanation of these investigations.

We summarize here the main steps of the analysis. We first reveal the possible
steady-state solutions that may develop as the swirl level of the incoming flow is
increased from zero to above the critical level (see §§2–7 and Appendices A–D). This
has been done by using a variational method to study the functional E(ψ(x, y)) whose
stationary points correspond to inviscid steady-state solutions (here, ψ(x, y) is the
stream function and y = r2/2). In §2 we discuss the existence and properties of a
steady-state solution which is the global minimizer of E(ψ(x, y)) and show that this
solution is strongly dominated by the global minimizer of the functional E(ψ(y))
which corresponds to the columnar (x-independent) problem. Therefore, in §3 we
conduct a thorough study of the various solutions of the columnar problem. The
results of §§2 and 3 are applied in §4 to describe in detail the global minimizer
solutions of the steady Euler equations as the inlet swirl is increased.

In §5 we extend Benjamin’s definition of the critical state to a columnar flow in
a finite-length pipe. In §6 we show the existence of a branch of min-max solutions
of E(ψ(x, y)) that naturally appears. In §7 we present the global bifurcation dia-
gram of solutions of the steady Euler equations based on the above results. The
global bifurcation diagram also shows the relations between the various analyses of
Benjamin (1962), Leibovich & Kribus (1990) and Keller et al. (1985) and demon-
strates the correlation between the inviscid theory and the numerical simulations of
high-Reynolds-number flows described by Beran & Culick (1992).

In §8 we summarize our recent results that revealed, for the first time, the special
relation between the stability of swirling flows in a finite-length pipe and the critical
swirl. We show that the critical swirl is a point of exchange of stability (see Wang
& Rusak 1996a, b). We also show that the stability is closely related to the global
bifurcation diagram of steady-state solutions. Moreover, the stability results provide
a theoretical understanding of the specific stability characteristics as described in
the numerical studies of the Navier–Stokes equations by Lopez (1994) and Beran
(1994).

The stability analyses together with the study of steady-state solutions suggests a
consistent explanation of the mechanism leading to axisymmetric vortex breakdown
in high-Reynolds-number swirling flows in a pipe (§9). It is an evolution from an
initial columnar swirling flow to another, relatively stable, equilibrium state which
represents a flow around a separation zone. This evolution is the result of the
loss of stability of the columnar base state when the swirl ratio of the incoming
flow is near or above the critical level. The instabilty mechanism is governed by
the interaction of disturbances propagating upstream with the inlet state. Our recent
numerical computations, guided by the present theory (Rusak, Wang & Whiting 1996),
demonstrate the relations between the stability of swirling flows and the critical swirl
and provide the time history of the nonlinear transition.

Section 10 discusses the effects of slight viscosity on the development of a steady
swirling flow and shows the relation between the present study and the numerical
computations using the axisymmetric Navier–Stokes equations. We find that the
present approach, based on the Euler equations, is the inviscid-limit theory of the
axisymmetric viscous flow problem.
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1.2. Mathematical model

1.2.1. Basic problem

An axisymmetric incompressible and inviscid swirling flow is considered in a finite-
length pipe of unit radius (0 6 r 6 1) and length x0 where 0 6 x 6 x0. The axial
and radial distances are rescaled with the radius of the pipe. Let y = r2/2 where
0 6 y 6 1/2. By virtue of the axisymmetry, a stream function ψ(x, y, t) can be defined
where the radial component of velocity u = −ψx/(2y)1/2, and the axial component
of velocity w = ψy . The equations which connect the development in time, t, of the
stream function ψ, the azimuthal vorticity η = rχ, where χ = −(ψyy + ψxx/2y), and
the circulation function K = rv (where v is the circumferential velocity) may be given
by (see, for example, Szeri & Holmes 1988)

Kt + {ψ,K} = 0, χt + {ψ, χ} =
1

4y2
(K2)x. (1)

Here the brackets {ψ,K} and {ψ, χ} are defined by

{ψ,K} = ψyKx − ψxKy, {ψ, χ} = ψyχx − ψxχy. (2)

We study the development of the flow with certain conditions posed on the boundaries.
For any time, t, we set ψ(x, 0, t) = 0 to enforce axisymmetry along the pipe axis, and
ψ(x, 1/2, t) = w0 which gives the total mass flux across the pipe. Along the inlet, x = 0,
for any time, t, an incoming flow profile described by the axial flow, the circulation
and the azimuthal vorticity is given as

ψ(0, y, t) = ψ0(y), K(0, y, t) = ωK0(y),

χ(0, y, t) = −ψ0yy (or ψxx(0, y, t) = 0).

}
(3)

Here ω reflects the swirl level of the incoming flow. The radial velocity component
along the inlet is found as part of the solution of the problem. We allow the inlet state
a degree of freedom to develop a radial velocity, to reflect the upstream influence by
disturbances that have the tendency to cast such an influence. Along the pipe outlet,
x = x0, we set the radial velocity component to zero, i.e.

ψx(x0, y, t) = 0 (4)

for all time. For a long straight pipe (x0 � 1) this outlet condition only weakly
affects the upstream flow. Similar boundary conditions have been considered by Salas
& Kuruvila (1989), Beran & Culick (1990) and Lopez (1994) in their numerical
simulations of the Navier–Stokes equations and by Buntine & Saffman (1995) in their
theoretical study of a steady swirling flow in a finite-length diverging pipe using the
Euler equations. These boundary conditions may also reflect the physical situation as
reported in Bruecker & Althaus’s (1995) experiments. We want to point out that in
certain cases where the pipe is short and diverges significantly, such as in combustion
chambers and the studies by Buntine & Saffman (1995), different outlet conditions
may have a strong effect on the flow and result in different solutions.

The problem defined by equations (1)–(4) is well posed and describes the evolution
of a swirling flow in a finite-length pipe. We consider some relevant initial conditions
for the stream function, circulation and azimuthal vorticity, such as a perturbed
columnar state throughout the pipe at t = 0

ψ(x, y, 0) = ψ0(y) + εψ(x, y), K(x, y, 0) = ωK0(y) + εK(x, y),

χ(x, y, 0) = −ψ0yy − εχ(x, y)

}
(5)
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where εψ(x, y), εK(x, y) and εχ(x, y) are prescribed disturbances. Here,

ψ(x, y, t) = ψ0(y), K(x, y, t) = ωK0(y), χ(x, y, t) = −ψ0yy

is a base steady-state solution of (1)–(4) for any time t and every swirl level, ω, that
describes a columnar flow. Starting from the initial conditions (5), it is expected that
the flow will develop uniquely in time. Drazin & Howard (1966) proved the uniqueness
of a time-dependent solution of the Euler equations for similar boundary conditions
and any initial state. Also, we believe that the axisymmetric vortex breakdown is
primarily related to the swirl level, ω, of the incoming flow. Therefore, we fix the
functions ψ0(y) and K0(y) and look for different solutions of (1)–(5) for various levels
of ω.

In order to understand the dynamics of a swirling flow governed by (1) with
boundary conditions (3) and (4) and initial conditions (5), it is important to study the
stability characteristics and the time-asymptotic behaviour, specifically as it is related
to steady-state solutions of the problem. We will first concentrate on the analysis of
the steady-state solutions of these equations for a given swirl level, ω, and prove the
existence of multiple steady-state solutions of the problem (1)–(4). We will derive the
bifurcation diagram of steady-state solutions as the swirl level, ω, of the incoming
flow is changed. The bifurcation diagram resulting from our analysis is summarized in
§7. In §8 we will return to study the dynamics of a swirling flow governed by (1)–(5).
We will examine the linear stability of the various steady-state solutions found in
our analysis according to the recently presented results by Wang & Rusak (1996a, b).
The bifurcation diagram of steady-state solutions together with the stability results
will shed new light on the evolution of swirling flows as described by (1)–(5) (see
§9).

1.2.2. Steady-state problem

When the flow is steady equations (1)–(4) may be reduced to the Squire–Long
equation (SLE) (Squire 1956 and Long 1953, also known as the Bragg–Hawthorne
1950 equation):

ψyy +
ψxx

2y
= H ′(ψ)− I ′(ψ)

2y
on Ωx0

= (0, x0)× (0, 1/2) (6)

with boundary conditions

ψ(x, 0) = 0, ψ(x, 1/2) = w0,

ψ(0, y) = ψ0(y), K(0, y) = ωK0(y), ψxx(0, y) = 0, ψx(x0, y) = 0

}
(7)

Here, H is the total head function, H = p/ρ+(u2 + w2 + v2)/2, p is the static pressure
and ρ is the density. I = K2/2 is the extended circulation function. H and I are
conserved along a streamline and, therefore, are functions of ψ only. These functions
may be determined from the inlet profiles ψ0(y), K0(y) and the swirl level ω. Therefore,
the columnar vortex flow ψ(x, y) = ψ0(y), K(x, y) = ωK0(y) is a base solution of (6)
and (7) for any swirl level ω. For relevant inlet flows such as the Rankine vortex, the
Burgers’ vortex or the ‘Q-vortex’, it can be shown that both H and I are nonlinear
functions of ψ (see, for example, figure 2 and (21) and (22) below); H is approximately
a linear function of ψ and I is approximately a quadratic function for small ψ, and
both are almost constant when ψ is near w0 = ψ0(1/2). This nonlinearity may give
rise to multiple solutions of (6) and (7) for a fixed value of ω, in addition to the base
solution.
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Figure 2. The total head and circulation functions for the Rankine vortex (see (21) and (22)).

It should be noticed, however, that for certain cases relevant to vortex breakdown,
the flow may evolve uniquely in time from an initial near-columnar state to a
steady state that contains a separation zone. From the perspective of the steady-state
problem, the specification of the functions H and I inside the separation zone is
problematic. However, from the perspective of the time-dependent problem described
above, the determination of the functions H and I in the separation zones should
depend on the time-history of the flow starting from initial conditions (5). We will
study in this paper various possible continuation models of the functions H and I
in the separation zone and describe the resulting steady-state solution from those
models. We will relate these various possible steady-state solutions to the expected
(unique) behaviour of the solution of the time-dependent Euler equations (1)–(4) with
initial conditions (5). Using this idea, we will suggest describing the separation region
as a stagnation zone, where the flow inside this zone evolves in time from a flow
region concentrated around the centreline at the pipe inlet. Physical considerations
and numerical simulations of inviscid and unsteady swirling flows (see Rusak et al.
1996) also demonstrate that the stagnation model is a relevant model to describe the
functions H and I in the separation zone.

Solutions of (6) are well known to correspond to the stationary points of the
following functional:

E(ψ) =

∫ x0

0

∫ 1/2

0

(
ψ2
y

2
+
ψ2
x

4y
+H(ψ)− I(ψ)

2y

)
dydx. (8)

This variational principle was first introduced into the study of vortex breakdown by
Benjamin (1962) and was also used by Keller et al. (1985). We find that for various
values of ω, the functional E(ψ) has a complicated behaviour due to the nonlinear
nature of H(ψ) and I(ψ). The study of this behaviour will help to identify the various
solutions of (6) and (7) for a given ω. As we will show, some of the solutions of the
SLE do not bifurcate immediately from the base columnar flow solution mentioned
above and, therefore, cannot be detected by a local asymptotic analysis. Consequently,
a global analysis of E(ψ) and a rigorous mathematical study is essential and will shed
light on the development of a swirling flow in a pipe.
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2. Global minimizer of E(ψ)

2.1. Existence of global minimizer of E(ψ)

The natural step in the variational analysis is to seek the minimizer of E(ψ). We
rigorously prove (see Appendix A, Theorem A.1) that the global minimizer solution
ψg(x, y) of E(ψ) exists under the conditions:

1. H(ψ) and I(ψ) are bounded and piecewise smooth non-negative functions with
bounded first derivatives;

2. I(ψ) 6 c|ψ|p where p is a fixed number, 1 < p 6 2, and c > 0.
The boundedness of both H(ψ) and I(ψ) does not limit our approach since we are

interested in solutions with bounded mechanical energy and circulation coming into
the pipe. It should also be clarified that if assumption 1 is not satisfied it can be
shown that the global minimizer of E(ψ) may not exist.

We also show in Appendix A that the global minimizer solution is a regular solution
such that its first derivatives are continuous everywhere. It should be pointed out that
this solution of the SLE, (6) and (7), may allow discontinuous second derivatives but
it is nonetheless a solution of the steady Euler equations. Moreover, as we later claim,
in relevant cases a near columnar flow state may evolve naturally, in infinite time,
into the flow state described by the global minimizer solution with discontinuous
second derivatives. We find in this paper that, for certain values of ω, specifically for
high swirl cases, the global minimizer of E(ψ) is not the base columnar flow solution
ψ(x, y) = ψ0(y) and another solution that describes a different flow state is the global
minimizer of E(ψ).

In §2.2, we turn to the study of the columnar flow problem of (6) and (7), and the
behaviour of the columnar minimizers. In §2.3, we show the special relations between
the global minimizer ψg(x, y) of E(ψ) and the global minimizer of the columnar
problem.

2.2. Columnar flow

In the case of a columnar swirling flow where ψx ≡ 0 everywhere in Ωx0
, equation (6)

is reduced to the ordinary differential equation

ψyy = H ′(ψ)− I ′(ψ)

2y
(9)

with boundary conditions

ψ(0) = 0, ψ(1/2) = w0. (10)

Here the stream function ψ is a function of y only. The corresponding variational
principle is

E(ψ) =

∫ 1/2

0

(
ψ2
y

2
+H(ψ)− I(ψ)

2y

)
dy. (11)

It can be shown that for any solution of (9), E(ψ) =
∫ 1/2

0
(p/ρ+w2)dy, which represents

the flow force of the columnar flow in a pipe (Benjamin 1962).
We can prove from an argument similar to that in Appendix A, that the minimizer

of the columnar functional E(ψ) exists for given H(ψ) and I(ψ) that satisfy the same
assumptions in Theorem A.1. Let ψs(y) denote the global minimizer of the columnar
functional E(ψ).
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x10

ψ0(y)

ψ = 0
x

y

x0

ψg(x, y)

ψ = w0

ψs(y)

1
2

Figure 3. A schematic description of the global minimizer solution ψg(x, y).

2.3. Properties of the global minimizer of E(ψ)

We prove in Appendix B the relation between ψg(x, y), the global minimizer of E(ψ),
and ψs(y), the global minimizer of the columnar functional E(ψ) with the same
functions H(ψ) and I(ψ). We show that the outlet state of the global minimizer
solution, ψg(x0, y), tends to the columnar global minimizer solution, ψs(y), as the
length of the pipe x0 is increased. This means that the global minimizer of the PDE,
(6) and (7), is controlled by the minimizer of the columnar problem (9) and (10). The
global minimizer ψg(x, y) describes a transition along the pipe from the inlet state
ψ0(y) to the state ψs(y) along the outlet (see figure 3).

This result is quite natural once we notice that the global minimizer of the columnar
problem is not subjected to the inlet conditions. In certain cases, specifically when
the swirl level is high, ψs(y) may not be the state ψ0(y) which means that E(ψs(y)) <
E(ψ0(y)). Therefore, in order to minimize E(ψ) the global minimizer ψg(x, y) describes
a spatial transition with a minimal contribution to E(ψ) from the inlet state ψ0(y) to
the state ψs(y). When the pipe length x0 is long we can show that the length x1 of this
transition is finite where x1 < x0 and in the range x1 < x < x0 the global minimizer
ψg(x, y) is very close to the columnar state given by ψs(y) (see figure 3).

2.4. Balance of flow force

Multiplying (6) by ψx on both sides and integrating, we find∫ x̃

0

∫ 1/2

0

(
ψyyψx +

ψxxψx

2y

)
dydx =

∫ 1/2

0

dy

∫ x̃

0

(
H ′(ψ)ψx −

I ′(ψ)

2y
ψx

)
dx.

Integration by parts and the use of boundary conditions gives

−
∫ 1/2

0

dy

∫ x̃

0

d

(
ψ2
y

2

)
+

∫ 1/2

0

ψ2
x(x̃, y)− ψ2

x(0, y)

4y
dy

=

∫ 1/2

0

(
H(ψ(x̃, y))− I(ψ(x̃, y))

2y

)
dy −

∫ 1/2

0

(
H(ψ(0, y))− I(ψ(0, y))

2y

)
dy. (12)

We define the function

S(x) =

∫ 1/2

0

(
ψ2
y(x, y)

2
− ψ2

x(x, y)

4y
+H(ψ(x, y))− I(ψ(x, y))

2y

)
dy

= E(ψ(x, y))−
∫ 1/2

0

ψ2
x(x, y)

4y
dy. (13)



188 S. Wang and Z. Rusak

Here, E(ψ(x, y) is calculated at a fixed cross-section x using (11). Then, for any
solution of (6), we can rewrite (12) as

S(x) = constant = S(0) for all 0 6 x 6 x0. (14)

We can show that S(0) =
∫ 1/2

0
(p/ρ + w2)x=0dy. The function S(x) is the ‘flow force’

that must be constant at any cross-section x along the straight pipe due to the
conservation of the axial momentum. From the boundary conditions (7), we may find
that for any solution, ψ(x, y), of the problem given by (6) and (7),

E(ψ0(y))− E(ψ(x0, y)) =

∫ 1/2

0

ψ2
x(0, y)

4y
dy > 0. (15)

This means that for a steady-state solution of (6) and (7) we have E(ψ0(y)) >
E(ψ(x0, y)). Specifically, for the global minimizer ψg(x, y) of E(ψ), where x0 is large,
we find

E(ψ0)− E(ψs) =

∫ 1/2

0

ψ2
gx(0, y)

4y
dy > 0. (16)

In the case where the global minimizer solution of the columnar problem, ψs(y), is
different from the inlet state ψ0(y), we have E(ψs) < E(ψ0). Since the global minimizer
of the SLE describes a transition from the inlet state ψ0(y) to the outlet state ψs(y), we
can understand from (16) that the difference E(ψ0)− E(ψs) is related in this solution
to the establishment of a radial velocity component along the inlet.

3. Study of columnar swirling flow
Sections 2.3 and 2.4 raise the need to study the solutions of the columnar problem,

(9) and (10), in order to identify global minimizer solutions of (6) and (7) at various
levels of swirl.

In the theoretical studies of vortex breakdown, the inlet flow, ψ0(y) and K0(y), was
commonly approximated by one of the following models: the Rankine vortex (Keller
et al. 1985), the Burgers vortex (Leibovich & Kribus 1990) and the Q-vortex model
(Leibovich 1984). Each of these vortex models is characterized by a swirl parameter
ω. It can be shown that in each case there exists a critical swirl level, ωB , as defined
by Benjamin (1962), that can be determined by the following eigenvalue problem
derived from the linearized SLE (9) and (10):

φyy −
(
H ′′(ψ0;ωB)− ω2

B

Ĩ ′′(ψ0)

2y

)
φ = 0,

φ(0) = φ(1/2) = 0.

 (17)

Here Ĩ = K2
0/2. Benjamin (1962) classified a columnar vortex as supercritical, critical

or subcritical according to ω < ωB, ω = ωB and ω > ωB , respectively. Benjamin’s
classification is related to the dynamics of small-disturbance waves in the base swirling
flow. Supercritical flows have a low swirl ratio and are unable to sustain axisymmetric
small-disturbance standing waves. Subcritical flows have a high swirl ratio and are
able to support such waves. At the critical state, an infinitely long small-disturbance
standing wave may develop.

From the perspective of variational methods it can be shown (see for example
Courant & Hilbert 1953) that supercritical states (where ω < ωB) are local minimizers
of the functional E(ψ).
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In the rest of this paper, we concentrate on the case where the inlet profile ψ0(y) is
modelled by either the Rankine or the Burgers vortex. These are used as basic analysis
models to develop our new approach because of their analytical simplicity. However,
the results shown in this paper can also be extended to other relevant vortex model
(see our recent results on a Q-vortex in Rusak, Whiting & Wang 1997).

3.1. The Rankine vortex

The Rankine vortex is defined as a vortex flow with uniform axial velocity

w = w0 (18)

and swirl component

v =

{
ωr, 0 6 r 6 r0,

ωr2
0/r, r0 6 r 6 1.

(19)

For a columnar state the pressure is given by

dp

dr
= ρ

v2

r
. (20)

Here ω is the angular speed at the centre and r0 is the vortex core size. The functions
H(ψ) and I(ψ) are calculated from (18)–(20) as (see figure 2)

H(ψ) =

{
pst0/ρ+ (2ω2/w0)ψ when 0 6 ψ 6 1

2
w0r

2
0 ,

pst0/ρ+ ω2r2
0 when 1

2
w0r

2
0 6 ψ 6

1
2
w0

(21)

and

I(ψ) =

{
(2ω2/w2

0)ψ2 when 0 6 ψ 6 1
2
w0r

2
0 ,

1
2
ω2r4

0 when 1
2
w0r

2
0 6 ψ 6

1
2
w0.

(22)

Here pst0 is the total head at the centre, pst0 = p0 + 1
2
ρw2

0 (where p0 is static pressure
at the centre).

The stream function for the Rankine vortex has a simple form:

ψ0(y) = ψR(y) = w0y (23)

which is a solution of (9) with boundary conditions (10) for H(ψ) and I(ψ) given
by (21) and (22). Numerical solutions of the critical swirl ωB as a function of the
core radius r0 are given in Keller et al. (1985) for the Rankine vortex. It is found, for
example, that 2r0ωB/w0 = 2.405 when r0 is small. When ω < ωB, ψR = w0y describes
a supercritical state and is a local minimizer of E(ψ). In the following, we develop
the behaviour of E(ψ) for the Rankine vortex as ω increases from 0 to ωB with r0
and w0 fixed.

Consider the special case ω = 0. E(ψ) is reduced in this case to

E(ψ) =

∫ 1/2

0

ψ2
y

2
dy,

ψ(0) = 0, ψ(1/2) = w0/2.

 (24)

This is a strictly convex functional (see figure 4a) and the only stationary point of
E(ψ) is ψR(y) which is a global minimizer of E(ψ). When ω increases but is still small,
E(ψ) remains convex and ψR(y) remains the global minimizer of E(ψ).

We will show now that when ω becomes larger, but is still less than ωB (in the
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(a)

ψR = w0(y)

ω small

ω = 0

E(ψ)

(b)

ψR = w0(y) ψ∈W 1,2
b  (0, 1/2)

E(ψ)

ψ∈W 1,2
b  (0, 1/2)

(c)

ψR = w0(y)

E(ψ)

(d )

ψR = w0(y) ψ∈W 1,2
b  (0, 1/2)

E(ψ)

ψ∈W 1,2
b  (0, 1/2)

(e)

ψR = w0(y)

E(ψ)

( f )

ψR = w0(y) ψ∈W 1,2
b  (0, 1/2)

E(ψ)

ψ∈W 1,2
b  (0, 1/2)

ψK

ψs
ψs

Figure 4. The functional E(ψ) for (a) ω > 0 but small, (b) ω = ω∗, (c) ω∗ < ω < ω0, (d) ω = ω0,
(e) ω0 < ω < ω1, (f) ω = ωB .

supercritical region), ψR(y) is no longer the global minimizer of E(ψ). A calculation
shows that

E(ψR) =
pst0

2ρ
+ 1

4
w2

0 + 1
2
ω2r2

0 − 3
8
ω2r4

0 + 1
4
ω2r4

0 ln(r2
0). (25)

We consider now the case where r0 is small. Let

ψa =

{
0, 0 < y < a < 1

2
,

1
2
w0(y − a)/( 1

2
− a), a < y < 1

2
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y

ψ

ψR = w0 y

ψa

w0
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a0 1
2

Figure 5. Stream function for the Rankine vortex and comparison function.

be a comparison function, which is not a solution of (9), see figure 5. Through a
straightforward computation, we obtain for small r0 and small a

E(ψa) =
pst0

2ρ
+

w2
0

8( 1
2
− a)

+ ω2r2
0( 1

2
− a) + O(ω2r4

0 ln r0).

Therefore,

E(ψR)− E(ψa) = − w2
0a

4( 1
2
− a)

+ ω2r2
0a+ O(ω2r4

0 ln r0).

For a small r0 and a small a > 0, E(ψR) > E(ψa) when

ω >
w0√
2r0

. (26)

Therefore, for this range of ω, ψR(y) is no longer the global minimizer of E(ψ).
Also, notice the fact that when r0 ∼ 0, 2ωBr0/w0 = 2.405 (Keller et al. 1985).

Therefore, we find that in its supercritical region, the Rankine vortex, ψR , is no
longer the global minimizer of E(ψ) when

√
2 < 2ωr0/w0 < 2.405 and where r0 ∼ 0.

Actually, the numerical results of Keller et al. (1985) based on a stagnation model
in the separation zone show that for the Rankine vortex, there exists a special swirl,
ω0, for any core size r0, for which another solution, ψK(y), of the columnar problem
(9) and (10) is found. This special solution has the same flow force as ψR(y), i.e.
E(ψR) = E(ψK). Figure 11 in Keller et al. (1985) gives the details of the solution for
the special swirl ω0 for any core size r0. It is important to see that for every r0 the
swirl parameter ω0 satisfies 0 < ω0 < ω1. We can also see from their results that the
estimate given in (26) for small r0 is accurate.

From our viewpoint, ω0 is a special swirl level because at ω0 there exist two local
minimizers of E(ψ), ψR(y) and ψK(y), which have the same value of E(ψ) (see figure
4d).

As ω increases above ω0, ψR(y) ceases to be a global minimizer of E(ψ) and another
global minimizer of E(ψ) appears (see figure 4e). The new global minimizer describes
a flow state that is very different from the Rankine vortex and will be shown in §3.2
to describe a separation zone in a swirling columnar flow.

Based on these arguments we can now summarize the behaviour of E(ψ) as ω is
increased (see figures 4a–f ). In each figure ω is fixed.
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(a) When ω is small the functional E(ψ) has a unique stationary point, ψR(y),
which is the global minimizer of E(ψ), see figure 4a.

(b) There exists a swirl level, ω∗, where two solutions are found, one is ψR(y) and
the other is different from ψR(y). ω∗ is actually a bifurcation point of the ODE
problem (9) and (10). See figure 4b.

(c) When ω∗ < ω < ω0, we find that ψ = ψR(y) is still the global minimizer of
E(ψ), but two other stationary points can also be found. One is a local minimizer and
the other is a min-max point of E(ψ). The behaviour of E(ψ) in this case is given in
figure 4c.

(d) When ω = ω0, the solution ψK(y) obtained by Keller et al. (1985) is found,
and E(ψ) is shown in figure 4d. ω0 is a threshold value of the swirl, across which the
columnar global minimizer, ψs(y), drastically changes.

(e) When ω > ω0, we find that ψR(y) is not a global minimizer of E(ψ) since there
exists a solution, ψs(y), different from ψR(y), for which E(ψR) > E(ψs). The behaviour
of E(ψ) in this case is described in figure 4e.

(f) When ω = ωB (Benjamin’s critical state), ψR(y) is actually an inflection point
of E(ψ) along a special direction, and is no longer a local minimizer. The behaviour
of E(ψ) in this case is given in figure 4f.

The behaviour of E(ψ) as described in figure 4 can be confirmed by numerical
computations (see Rusak et al. 1996). Specifically, the existence of the special swirl
levels ω∗, ω0 and ωB and multiple solutions when ω > ω∗ can be verified. Then,
E(ψ) for each solution can be calculated and compared one with the other to reveal
the nature of each solution (local minimizer, global minimizer or min-max points of
E(ψ)).

3.2. The properties of ψs when ω > ω0

We have shown above that the columnar global minimizer ψs = ψR(y) when ω < ω0.
However, when ω > ω0, ψs 6= ψR(y). In this section we study the properties of the
global minimizer, ψs, of the columnar functional E(ψ) when ω > ω0. As we have
seen in §2, these properties are essential to understand the qualitative behaviour of
the global minimizer ψg(x, y) of the axisymmetric functional E(ψ).

Let us consider all the solutions of (9) and (10) with H(ψ) and I(ψ) given by (21)
and (22) which satisfy the condition 0 < ψ(y) < w0 for 0 < y < 1/2. This condition
is used here since the information that we have about the functions H(ψ) and I(ψ)
according to (21) and (22) is limited to the range 0 < ψ(y) < w0. This condition
results in solutions describing columnar flow states without separation zones. The
family of these solutions may be given by

ψrc =


1
2
w0

(
2y+(r2

0− r2
c )

(2y)1/2

rc

J1(2ω(2y)1/2/w0)

J1(2ωrc/w0)

)
for 0< y < 1

2
r2
c , 0<ψrc <

1
2
w0r

2
0 ,

w0

1− r2
0

1− r2
c

(y − 1
2
r2
c ) + 1

2
w0r

2
0 for 1

2
r2
c < y < 1/2,

(27)
where J1 denotes the Bessel function of the first kind, r0 is the Rankine vortex core
radius and rc < 1 is the vortical core radius of the solution ψrc . The core size, rc, is
determined by the matching of axial velocity at r = rc:

(r2
0 − r2

c )
ω

rc

J0(2ωrc/w0)

J1(2ωrc/w0)
= −w0(r

2
0 − r2

c )

1− r2
c

(28)

where J0 is the Bessel function of order zero. We see that rc = r0 is a trivial solution of
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(28). There are also infinitely many non-trivial solutions of (28), rc1 < rc2 < rc3 < ....
However, analysis shows that all the solutions corresponding to rc2, rc3, ... (except
for rc1) give values of ψrc(y) at some 0 < y < 1

2
r2
c that are beyond the range

0 < ψrc(y) < w0.
Direct computation using (27) and (28) shows that

E(ψrc) =
pst0

2ρ
+ 1

4
w2

0 + ω2( 1
8
r4
c + 1

2
r2

0(1− r2
c ) + 1

4
r4

0 ln(r2
c )). (29)

Let ψrc1 be the solution corresponding to rc1; we have from (25) and (29)

E(ψrc1 )−E(ψR) =
ω2r4

0

8

(
(r2
c1 − r2

0)(r2
c1 − 3r2

0)

r4
0

+4 ln

(
rc1

r0

))
> 0, when rc1 > r0. (30)

It can also be shown that rc1 > r0 when ω < ωB . Thus, we conclude from (30) that
ψrc1 cannot be a minimizer of E(ψ) when ω < ωB . Actually, ψrc1 is a min-max point
of E(ψ). Therefore, when ω0 < ω < ωB , the global minimizer ψs(y) of E(ψ) must
be some function other than the functions ψR(y) and ψrc1 (y) and ψs(y) must have
values beyond the interval (0, w0). In particular, ψs(y) may become zero or negative
somewhere on 0 < y < 1/2, which means that a separation region may appear in
the columnar minimizer when ω > ω0. Therefore, we need to specify the functions
H(ψ) and I(ψ) for negative values of ψ (to describe the flow in the separation zone).
From physical reasons, any such extension must keep H(ψ) and I(ψ) bounded and
so, according to the existence theorem, the global minimizer ψs exists.

We now discuss the properties of the minimizer, ψs(y), of E(ψ) when a stagnation
model is considered to describe the flow in the separation zone. We also consider
other continuation models and their relation to the stagnation model. These results
will be used in §4 to describe the properties of the global minimizer solution of the
SLE that corresponds to each continuation model. Then, we will demonstrate that
the stagnation model is strongly related to the expected (unique) behaviour of the
solution to the time-dependent Euler equations (1)–(5) as time tends to infinity.

3.2.1. Stagnation model

For a stagnation continuation model, H(ψ) and I(ψ) are extended to ψ < 0 as

H(ψ) = H(0) and I(ψ) = I(0) = 0 for ψ < 0. (31)

It can be shown that in this case the global minimizer solution of (9) and (10), ψs(y),
must satisfy ψs(y) > 0 for any y in the domain 0 < y < 1/2. To show this, consider
the case where ψs(y) is negative in some interval (y1, y2) in 0 < y < 1/2. According
to the extension (31), in this interval,

∫ y2

y1
(ψ2

sy/2 +H(ψ)− I(ψ)/2y)dy > 0. Therefore,

in order to minimize the contribution of this interval to E(ψ), we must have ψs = 0
in the entire interval (y1, y2). From the previous arguments that no solution can be a
minimizer of E(ψ) if ψ > 0 everywhere in the domain 0 < y < 1/2, we find that the
minimizer solution ψs(y) of E(ψ) must have a finite stagnation region. Figure 6(a)
shows the solution ψs(y) for ω > ω0, where in the interval 0 > y > y0, ψs(y) ≡ 0.

3.2.2. Relation to other continuation models

Other possible continuation models, with bounded functions H(ψ) and I(ψ), may
have a global minimizer solution, ψs(y), with negative values in the domain 0 < y < ỹ0

(see figure 6b). Therefore, ψs(y) may describe in such a case a columnar flow state
with regions of flow reversals. An example of using such a continuation model in the
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Figure 6. Stream functions, (a) for the columnar global minimizer when ω > ω0 using a stagnation
model in the separation zone, and (b) using a stagnation model in the separation zone and using
another continuation model.

analysis of vortex breakdown is presented in Keller (1995). We argue that for a fixed
level of swirl where ω > ω0 we always have

ỹ0(ω) > y0(ω), (32)

i.e. for a fixed level of swirl the size of the separation zone is minimal when a
stagnation model is used.

Comment: we will see in §4 that ỹ0 and y0 are the characteristic sizes of the
separation zones described by the global minimizer solutions, ψg(x, y), of E(ψ) with
the respective continuation models of H(ψ) and I(ψ).

To demonstrate (32), let us suppose that for a fixed level of swirl ω > ω0 we have
ỹ0 < y0. We construct the following comparison function (see figure 6b)

ψ̄ =

{
ψsỹ0

, 0 < y < ỹ0,
ψsy0

, ỹ0 6 y 6 1/2.
(33)

Here, ψsy0
corresponds to the columnar minimizer calculated using the stagnation

model and ψsỹ0
corresponds to the columnar minimizer calculated for another con-

tinuation model. Then, we find that E(ψ̄) 6 E(ψsỹ0
) and so ψ̄ is also a minimizer

of E(ψ). But, as we notice from (33), there is a corner point in ψ̄ at y = ỹ0, and
this contradicts the regularity of the global minimizer solution (that is discussed in
Appendix A).

We also notice that for other continuation models with bounded functions H(ψ)
and I(ψ), the threshold value of swirl ω̃0 is always less than the value of ω0 found
in the case where a stagnation model is used. This result can also be seen in figure 3
of Keller (1995) for his special continuation model. To demonstrate this point, let ψs0
be the solution at ω0 when a stagnation model is used and let ψ̃s0 be the solution at
ω̃0 when another continuation model is used. Notice that according to the definition
of ω0 we have E(ψs0;ω0) = E(ψR;ω0). Also, E(ψ̃s0;ω0) < E(ψs0;ω0). Therefore, ω̃0

must have a value that is less than ω0 such that we can find E(ψ̃s0; ω̃0) = E(ψR; ω̃0).

3.3. The Burgers vortex

The discussion in this section helps to clarify the ideas developed above in §§3.1 and
3.2. The Burgers vortex is defined as a vortex flow with uniform axial velocity

w = w0 (34)
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Figure 7. Bifurcation diagram of solutions of the columnar problem for a Burgers vortex model
where β = 1.0 and w0 = 1.0.

and swirl component

v = ω
(1− e−βr

2

)

r
(35)

or

ψ0(y) = w0y, K0(y) = 1− e−2βy. (36)

Here ω is the swirl level and β is related to the size of the vortical core, rc = 1.12/β1/2.
The functions H ′(ψ) and I ′(ψ) are calculated from (34)–(36) as

H ′(ψ) = w0

I ′(ψ)

2ψ
, I ′(ψ) = ω2 2β

w0

(1− e−2βψ/w0 )e−2βψ/w0 . (37)

Substituting (37) in (9) results in a nonlinear ODE for the solution of ψ(y) with
boundary conditions (10). Using the stagnation model described in (31), we solved
(9) and (10) with (37) by standard numerical techniques. The results are presented
in detail in Rusak et al. (1996) and we briefly summarize them in this section. A
typical result where w0 = 1.0 and β = 4.0 is presented in figure 7. We find that there
exists a level of swirl ω∗ which is a bifurcation point of solutions. When ω < ω∗

only the base flow solution ψ = w0y exists. However, when ω = ω∗ two solutions
exist: one is the base flow solution and the other is a special solution describing a
swirling flow with a finite stagnation zone around the centreline. When ω > ω∗ three
solutions are found: one is the base flow solution, ψ0(y), and the other two solutions
ψ1(y) and ψ2(y) bifurcate from the non-trivial solution at ω∗. One of those, ψ1(y),
describes a columnar state with a finite stagnation zone. As ω is increased above
ω∗ this branch of solutions describes a swirling flow state with a larger stagnation
zone. Using equation (11) we calculated the flow force E(ψ) for each solution and
results are given in figure 7. We can see that there exists a level of swirl, ω0, where
E(ψ1) = E(ψ0). For w0 = 1.0 and β = 4.0 we find that ω0 = 0.7305 < ωB = 0.8829.
When ω < ω0 the base solution ψ0 = w0y is the global minimizer of E(ψ), ψs = ψ0(y).
However, when ω > ω0 we find that the global minimizer of E(ψ) is ψs = ψ1(y). These
numerical calculations confirm the general behaviour of the bifurcation diagram as
discussed in §3.1 for the Rankine vortex. For more details of these calculations see
Rusak et al. (1996).
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4. The properties of the global minimizer of E(ψ)

In this section, the properties of the global minimizer ψg(x, y) of E(ψ) (given by
(8)) are examined. We will concentrate on the case where the inlet flow, ψ0(y), and
H(ψ) and I(ψ) are described by the Rankine or Burgers vortex models. A similar
discussion can be presented for other vortex models, such as the Q-vortex, and the
qualitative results are expected to be the same. We discuss the nature of the global
minimizer, ψg(x, y), when a stagnation model is considered in the separation zone as
well as other possible continuation models.

We distinguish between several cases as the swirl at the inlet is increased.

4.1. The case where 0 < ω 6 ω0

We will show first that when 0 6 ω 6 ω0, the global minimizer of E(ψ) is the base
columnar flow

ψg(x, y) ≡ ψ0(y). (38)

When 0 6 ω 6 ω0, we have

E(ψ) =

∫ x0

0

∫ 1/2

0

(
ψ2
y

2
+H(ψ)− I(ψ)

2y

)
dydx+

∫ x0

0

∫ 1/2

0

ψ2
x

4y
dydx

>

∫ x0

0

∫ 1/2

0

(
ψ2

0y

2
+H(ψ0)−

I(ψ0)

2y

)
dydx+

∫ x0

0

∫ 1/2

0

ψ2
x

4y
dydx

> E(ψ0) (39)

and so (38) is proven. This result shows that in the range where 0 6 ω 6 ω0, the inlet
flow may develop all along the pipe as a columnar flow with no axial disturbance.

4.2. The case where ω > ω0

The case where ω > ω0 is more interesting. As is known from §3.1, the base flow state
ψ0(y) is no longer a global minimizer of E(ψ) in this range of ω and, therefore, the
relation (39) does not hold in this case. The results of §2.3 and 2.4 can now be used
to describe the properties of the global minimizer of E(ψ) when ω > ω0.

We study two types of continuation models to describe the separation zone:

4.2.1. Stagnation model

(i) ω slightly greater than ω0: In §2.3 we found that for a long pipe the global
minimizer, ψg(x, y), is dominated by the columnar minimizer ψs(y). From §3, we also
find that when ω is slightly greater than ω0, the columnar minimizer, ψs(y), is different
from the inlet state, ψ0(y), and

E(ψ0)− E(ψs) > 0 but small. (40)

From the boundary condition (4) and the momentum balance (16) we find that

E(ψ0)− E(ψs) =

∫ 1/2

0

ψ2
gx(0, y)

4y
dy > 0 but small.

The balance of flow force requires that the excess of E between inlet and outlet
be converted into a relatively small radial flow along the inlet. Therefore, in the
case where ω is slightly greater than ω0, the global minimizer solution describes a
transition from an inlet state that is almost the columnar state ψ0(y), to an outlet
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Figure 8. The global minimizer solution ψg(x, y) when ω > ω0 and (a) ω close to ω0,
(b) ω − ω0 is not small.

state that is the columnar flow ψs(y), see figure (8a). Since the columnar minimizer,
ψs(y), must describe a separation zone (as shown in §3 for both the Rankine vortex
model and the Burgers vortex model), the solution ψg(x, y) describes the development
of an open breakdown zone in the swirling flow.

The transition described by the global minimizer, ψg(x, y), is composed of three
flow stages along the pipe (see figure 8a). In the range 0 < x < x1, ψg(x, y) is close
to ψ0(y). In the range x1 < x < x2, ψg(x, y) has a rather large radial flow component
and the flow has a transition from ψ0(y) to ψs(y). This transition must have the
minimum of the functional E(ψ) among all the possible transitions. We may call it ‘a
minimum transition stage’. In the range x2 < x < x0, ψg(x, y) is close to the columnar
minimizer ψs(y). Our numerical computations confirm this schematic description (see,
for example, figure 8 in Rusak et al. 1996).

We can now see that when x0 tends to infinity and ω → ω+
0 the global minimizer

solution tends to the solution of Keller et al. (1985).
(ii) ω > ω0, and ω − ω0 is not small: In this case∫ 1/2

0

ψ2
gx(0, y)

4y
dy = E(ψg(0, y))− E(ψg(x0, y))

is not small. Thus, the radial velocity component u(0, y) along the inlet (u =
−ψgx/(2y)1/2) is large, the open breakdown zone becomes larger and the breakdown
position tends closer to the inlet, see figure 8(b). In this case, the global minimizer
solution describes a relatively strong open breakdown. Our numerical computations
also confirm this schematic description (see figure 9 and also Rusak et al. 1996 for
more details).

4.2.2. Other continuation models

We first emphasize that according to the results in §§2 and 3 the global minimizer
solution of the steady Euler equations, (6) and (7), must describe a swirling flow
around an open separation zone when ω > ω̃0. This solution cannot describe a
swirling flow around a closed separation zone; and this fact is independent of the
choice of continuation model. When continuation models, other than the stagnation
model, are used we find global minimizer solutions that are similar to the solution
described above, but with reversed flow in the open separation zone. Specifically, this
means that the outlet section at x = x0 becomes, partially, an inlet at the region
where flow is reversed (see figure 10). The continuation model actually specifies
the flow conditions at this inlet part at x = x0. From the discussion in §3.2 we
find that the separation zone becomes larger as ω is increased above ω̃0. Also, for
each ω, the separation zone is larger than that described by the global minimizer
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Figure 9. Time-history plots of the stream function for a pipe flow where the inlet state is described
by the Burgers vortex model (34) and (35) and where ω = 1.0 and β = 4.0. In these figures the top
line is the pipe wall, the bottom line is the pipe centreline, the left section is the inlet and the right
section is the outlet.

solution when a stagnation model is used. This shows that when reversed flow
at x = x0 enters the separation zone, the size of this zone becomes larger. This
also shows that, within the inviscid and steady framework, different continuation
models, that reflect different inlet conditions at part of the boundary at x = x0, may
result in different global minimizer solutions for every ω > ω̃0. This demonstrates
the non-uniqueness of solutions of the SLE (steady Euler equation) that may exist
when various continuation models (various inlet conditions along part of the outlet)
are used. In the inviscid and steady-state case, this non-uniqueness of solutions is
expected, and within this framework, the choice of the proper model is an insoluble
task. The various inviscid solutions may correspond to different physical situations,



The dynamics of swirling flow in a pipe 199

0

ψ0(y) ψ = 0

x

y

x0

ψg(x, y)

ψ = w01
2

x2x1

ψ > 0

ψ < 0

ψs(y)∼

Figure 10. The global minimizer solution ψg(x, y) when ω > ω̃0 that corresponds to other
continuation models.

not necessarily the physical situation that we look for in our case, i.e. the steady-state
solution that may develop in time according to the unsteady Euler equations (1)–(5)
as described in the mathematical model (§1). Starting from certain initial conditions
of the flow in the pipe, the dynamics of the flow described by equations (1)–(5) leads
naturally and uniquely to a certain steady-state solution which is related to only one
specific model of continuation.

4.3. Discussion on the global minimizer solution

The above analysis shows that as the swirl of the incoming flow is changed around the
level ω0, the global minimizer solution drastically changes its nature from a columnar
flow all along the pipe, when ω < ω0, to a much different solution that must describe
a swirling flow around an open breakdown zone, when ω > ω0. The swirl level ω0 is
a turning point of the global minimizer solution.

In §4.2 we raised the problem of the choice of the continuation model in the
separation zone to determine the global minimizer solution that is related to the
dynamics of the flow as described by (1)–(5). We now discuss this dynamical process
as presented in figure 9. Figure 9 represents a typical evolution of an inviscid swirling
flow into a breakdown solution. Other cases given in Rusak et al. (1996) show a
similar dynamical behaviour.

As we show later in this paper, the mechanism leading to vortex breakdown is the
loss of stability of a subcritical swirling columnar flow. Therefore, when a columnar
flow loses its stability, it must develop a radial velocity component which will result
in a divergence of the streamlines near the centreline. This divergence becomes
significant after some time and forms a large diverging region where the flow comes
from the inlet flow concentrated near the centreline (figure 9). Since the mass flux and
circulation near the centreline are O(y) we conclude from the conservation of mass
and circulation that the flow inside this region evolves as a near potential flow with
very small azimuthal vorticity, swirl and axial velocity. This situation, together with
the boundary condition ψx(x0, y, t) = 0, results in an axial velocity in the pipe that is
always positive, with no reversed component, specifically, at the outlet x = x0. The
flow in the diverging zone evolves uniquely in infinite time into a stagnation zone.
The flow inside the stagnation zone comes from an infinitesimal region concentrated
around the centreline at the pipe inlet. We want to emphasize that the formation of
the stagnation zone in the swirling flow is a natural consequence of the dynamical
process described by (1)–(5) and no special assumption has been made to create
the stagnation zone. The dynamics of the swirling flow shows that the flow in the
stagnation zone is naturally connected with the inlet flow at the centreline. In this
way the dynamics of the flow as described by (1)–(5) actually resolves the choice of
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the proper continuation model in the analysis of steady and inviscid swirling flows.
The results of our numerical simulations using the unsteady Euler equations (1)–(5)
(see Rusak et al. 1996 and figure 9) confirm this idea and demonstrate that in relevant
cases the stagnation model is the proper model to use in the inviscid and steady-state
analysis of swirling flows. Actually, we do not use any extra information in addition
to the inlet conditions and in this way the stagnation model is not a continuation
model.

5. The critical state of a swirling flow in a finite-length pipe
We consider now a base steady swirling columnar flow where ψ(x, y) = ψ0(y),

which is a solution of the SLE (6) and (7). A small-disturbance analysis of the SLE
using

ψ(x, y) = ψ0(y) + εψ1(x, y) + ..., (41)

where ε� 1 and ψ1 is the disturbance stream function, results in the linearized SLE

ψ1yy +
ψ1xx

2y
−
(
H ′′(ψ0;ω)− ω2 Ĩ

′′(ψ0)

2y

)
ψ1 = 0,

ψ1(x, 0) = ψ1(x, 1/2) = 0 for 0 6 x 6 x0,

ψ1(0, y) = ψ1x(x0, y) = 0 for 0 6 y 6 1/2.

 (42)

Here, Ĩ = K2
0 (y)/2. This is an eigenvalue problem that has non-trivial solutions only

at specific values of ω. This eigenvalue problem was first studied by Squire (1960)
and Benjamin (1962) for an infinitely long pipe. Benjamin (1962) defined the first
eigenvalue of (42) when x0 tends to infinity as the critical state, where ω = ωB .

We modify Benjamin’s critical state concept to the case of a finite-length pipe to
reflect the effect of geometry. The ‘critical swirl of a flow in a finite length pipe’ is
defined as the first eigenvalue of (42) and is denoted as ω1. The critical swirl ω1 is a
bifurcation point of branches of solutions of the SLE where ψ1(x, y) is given by

ψ1(x, y) = Φ(y) sin

(
π

2x0

x

)
(43)

and where ω1 and Φ are determined by the eigenvalue problem

Φyy −
(
π2/4x2

0

2y
+H ′′(ψ0;ω1)−

ω2
1 Ĩ
′′(ψ0)

2y

)
Φ = 0,

Φ(0) = 0, Φ(1/2) = 0.

 (44)

Notice that as x0 tends to infinity ω1 tends to the critical swirl ωB of Benjamin (1962);
ω1 may also be identified as the transcritical bifurcation point of first sinusoidal
solution branch described by Leibovich & Kribus (1990). Using a weakly nonlinear
analysis in the case of an infinitely long pipe, Leibovich & Kribus (1990) showed that
when ω < ω1 the branch of solutions bifurcating at the critical state may describe a
solitary wave in the flow.

It is important to point out that from the perspective of variational methods it can
be shown (see, for example, Courant & Hilbert 1953) that the columnar flow solution
ψ(x, y) = ψ0(y) is a local minimizer of the functional E(ψ) when ω < ω1. Moreover,
at ω = ω1 this columnar solution is an inflection point of E(ψ) where the first and
second variations of E(ψ) vanish. This is similar to the behaviour of the columnar
functional E(ψ) at ωB (see figure 4f). We will use these results in the next section to
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Figure 11. The functional E(ψ)/x0 for ω0 < ω < ω1.

show the existence of a min-max solution of the SLE (6) for every ω in the range
ω0 < ω < ω1.

6. Min-max solution of SLE when ω0 < ω < ω1

In the previous sections we found that when ω > ω0 the global minimizer ψg(x, y)
of E(ψ) is very different from the columnar flow ψ0(y) that is the global minimizer
of E(ψ) when ω 6 ω0. Also, from the discussion in the end of §5, we find that the
columnar flow ψ(x, y) = ψ0(y) is a local minimizer of E(ψ) when ω0 < ω < ω1.
Therefore, for each ω in the range ω0 < ω < ω1 there exist two minimizer solutions
of E(ψ). Consequently, if the functional E(ψ) is well behaved, one may expect for
any ω in the range ω0 < ω < ω1 the existence of another, third, stationary point of
E(ψ), between the local minimizer ψ0(y) and the global minimizer ψg(x, y), that is a
min-max point of E(ψ) (see figure 11).

We rigorously prove in Appendix C (Theorem C.1) the existence of a min-max
solution ψM(x, y) of the SLE (6) for any swirl ω0 < ω < ω1. The proof uses the
‘Mountain-Pass Theorem’ from nonlinear analysis. The existence of the min-max
solution is strongly related to the drastic change in nature of the global minimizer
solution as ω changes around ω0 and the co-existence of two minimizers when
ω0 < ω < ω1. The branch of the min-max solutions bifurcates from the critical state
at ω = ω1 and is connected to the branch of global minimizer solutions when ω is
close to ω+

0 .
In Appendix D we study the properties of the min-max solution ψM(x, y). We

show that the min-max solution describes a swirling flow in a pipe that may have
a localized stagnation zone near the outlet (see figure 12). Along most of the pipe
the min-max solution ψM(x, y) describes a near columnar flow that is deflected in the
radial direction only near the outlet.

We now study the min-max solution ψM(x, y) when ω < ω1 but ω is close to ω1.
When ω = ω1, the columnar solution ψ(x, y) = ψ0(y) is an inflection point of E(ψ).
Using asymptotic analysis as described in Leibovich & Kribus (1990) (see also Wang
& Rusak 1996b) it can be shown that as ω tends to ω1 there exists a branch of
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Figure 12. The min-max solution ψM(x, y) when ω0 < ω < ω1.

solutions described by the asymptotic formula

ψ(x, y;ω) = ψ0(y) + (ω2 − ω2
1)κ0ψ1(x, y) + ... (45)

where ψ1(x, y) is given by (43) and (44) and

κ0 = −2

∫ 1/2

0

∫ x0

0

Ĩ ′(ψ0)

2y2ψ0y

ψ2
1(x, y)dxdy∫ 1/2

0

∫ x0

0

(
ω2

1

Ĩ ′′′(ψ0)

2y
−H ′′′(ψ0;ω

2
1)

)
ψ3

1(x, y)dxdy

. (46)

It can be shown that for vortex flows of interest κ0 < 0. Calculations of E(ψ)
show that E(ψ0(y)) < E(ψ(x, y)) when ω < ω1 but close to ω1 and, therefore, (46)
gives an asymptotic expression of the min-max solution as ω tends to ω−1 . The
asymptotic solution (46) describes an almost columnar swirling flow with slightly
deflected streamlines in the radial direction.

When ω < ω1 but not so close to ω1 and when the pipe is rather long (when x0

is of the order of 1/(ω1 − ω)) Leibovich & Kribus (1990) show that the asymptotic
expansion (46) is not valid since nonlinear effects become dominant. Using a multiple-
scale weakly nonlinear analysis similar to that given by Leibovich & Kribus (1990)
it can be shown that the min-max solution describes a localized (close to solitary)
standing wave near the outlet when ω < ω1 but not so close to ω1. When ω is further
reduced the localized standing wave grows in size and establishes a local stagnation
zone near the outlet (see figure 12 and the discussion in Appendix D).

When ω decreases toward the value ω0, the branch of min-max solutions ψM(x, y)
is connected with a special branch of local minimizers of E(ψ), denoted by ψL(x, y),
and both bifurcate at about ω0. The behaviour of solutions of the SLE near ω0,
and specifically the characteristics of the solutions ψL(x, y), are complicated and
described in detail at the end of Appendix D. It can be shown that the branch of
local minimizer solutions ψL(x, y) develops naturally and continuously, as ω increases
above ω0 + ε(x0), into the branch of global minimizer solutions ψg(x, y) describing a
vortex breakdown state. Here, ε depends on the pipe length x0 and tends to zero as
x0 tends to infinity.

7. Bifurcation diagram of solutions of the SLE
We can now summarize the global bifurcation diagram of solutions of the SLE

as ω changes between 0 and ω+
1 , see figure 13. Each line in figure 13 represents a

schematic behaviour of the function E(ψ) for a fixed level of swirl ω and an extremum
represents a solution of the SLE (6) and (7).
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Figure 13. The bifurcation diagram of solutions of the SLE.

(a) When ω is less than or equal to ω0 there is only one possible solution of (6) and
(7), the columnar flow ψ0(y) throughout the pipe, which is also the global minimizer
of E(ψ) in this range of ω.

(b) When ω0 < ω 6 ω0 + ε(x0) there are three possible solutions of (6) and (7): the
columnar flow solution ψ0(y) which is still a global minimizer of E(ψ), the min-max
solution ψM(x, y), and the local minimizer solution denoted by ψL(x, y). This short
branch of local minimizer solutions connects the min-max branch and the global
minimizer branch, describing a vortex breakdown state. For a relatively long pipe it is
understood that the branch of min-max solutions and the branch of global minimizer
solutions are almost connected to each other at about ω0.

(c) When ω0 + ε(x0) < ω 6 ω1 there are three possible solutions of (6) and (7): the
columnar flow solution, ψ0(y), that is now a local minimizer of E(ψ), the min-max
solution ψM(x, y) which describes a localized standing wave in the swirling flow, and
the global minimizer solution ψg(x, y), which describes a large open stagnation zone
in the swirling flow.

(d) As the swirl is increased slightly above the critical level, ω1, the columnar flow
solution becomes a min-max point of E(ψ) and a new branch of local minimizer
solutions bifurcates at ω1 and may describe a non-columnar flow where the rotation
rate is increased along the pipe and has a smaller vortical core at the outlet. The
third possible solution when ω > ω1 is the global minimizer solution described above,
where it can now be shown that the stagnation zone becomes much larger and its
nose moves toward the inlet.

The results also show that the critical swirl is actually a transcritical bifurcation
point from which various branches of local minimizer solutions and min-max solutions
may develop.

The bifurcation diagram in figure 13 can now be given in terms of figure 1 that was
also used by Beran & Culick (1992) and Buntine & Saffman (1995). Here, again, the
minimum axial velocity along the pipe centreline found in each solution is used as a
parameter characterizing the solution, see figure 14. We can see that the bifurcation
diagram of the SLE (steady-state solutions of Euler equations) is strongly related to
the theories of Benjamin (1962), Leibovich & Kribus (1990) and the special solution
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Figure 14. The bifurcation diagram of figure 13 given in terms of figure 1.

of Keller et al. (1985) and provides the natural relations between the various solutions
as well as fills the gap between them. It is also evident that the bifurcation diagram of
the SLE correlates nicely with the bifurcation diagram resulting from the numerical
simulations of high-Reynolds-number swirling flows using the steady Navier–Stokes
equations (see Beran & Culick 1992). Figure 14 suggests that the bifurcation diagram
of the steady and viscous solutions is strongly dominated by the steady and inviscid
bifurcation diagram when the Reynolds number is sufficiently large. The relations
between these diagrams will be discussed in more detail in §10.

In the following section we return to study the dynamics of a swirling flow described
by (1)–(5) and, specifically, we discuss the stability of the various branches of steady-
state solutions of the SLE. We will show the relation between the critical state at the
swirl level ω1 and the stability of the swirling flow solutions bifurcating at ω1.

8. Summary of stability analyses
The dynamics of a swirling flow described by (1) with boundary conditions (3) and

(4) and initial conditions (5) is strongly related to the bifurcation diagram for the
steady-state solutions as given in figures 13 and 14. Of specific interest is the dynamics
of swirling flows near the critical state. From the theory of dynamical systems it is
strongly expected that the critical level of swirl is also a point of exchange of stability
(see Ioos & Joseph 1980).

The linear stability to axisymmetric disturbances of the various branches of solu-
tions bifurcating at the critical state has been recently studied by Wang & Rusak
(1996a, b). A linearized set of equations for the development of infinitesimal axially
symmetric disturbances imposed on a base rotating columnar flow has been derived
from (1)–(5). Then, a general mode of axisymmetric disturbances, that is not limited
to the axial-Fourier mode, has been introduced and an eigenvalue problem was ob-
tained. Asymptotic analyses of the eigenvalue problem near the critical state for both
the columnar and non-columnar branches of solutions bifurcating at the critical state
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have revealed an unknown instability mechanism that cannot be detected by any of
the previously known stability analyses. It has been shown that the critical level of
swirl is a point of exchange of stability. It has been found that the branches of local
minimizer solutions have an asymptotically stable mode of disturbance whereas the
branches of min-max solutions are unstable (see figure 15).

The results presented in Wang & Rusak (1996a) also provide an interesting physical
picture, specifically for the stability of columnar swirling flows. For example, let us
consider a uniform axial flow in a straight pipe. When there is no swirl, the flow
cannot sustain any disturbance and any initial disturbance is convected downstream
by the axial flow and is swept out from the flow domain in a finite time. When swirl
is introduced, infinitesimal disturbances to the flow propagate at different speeds that
depend on the swirl level (see Benjamin 1962). There exists the critical level of swirl,
ω1, where the maximum speed of the infinitesimal disturbances propagating upstream
is equal to the axial speed of the base flow. In this case the flow can sustain a neutrally
stable standing small-disturbance wave with a finite length. This mode of disturbance
is linearly stable at a supercritical state (ω < ω1) because less swirl results in a smaller
maximum speed of disturbances propagating upstream and, therefore, the washout
effect of the axial flow is more dominant, resulting in the decay of the disturbance
in time. However, when the swirl is greater than the critical level (ω > ω1), the
disturbance mode is unstable since higher swirl results in higher maximum speed of
disturbances propagating upstream and, therefore, they become more dominant. Since
the inlet conditions (3) for the axial and circumferential velocity components and the
azimuthal vorticity are fixed for all time, the small disturbance moving upstream
cannot propagate through the incoming flow and, therefore, tends to accumulate and
create an instability. This axisymmetric instability mechanism may be observed in
Sarpkaya’s (1971) experiments and in the recent experiments of Bruecker & Althaus
(1995) and Malkiel et al. (1996) where the growth of the axisymmetric breakdown
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may be associated with an unstable axisymmetric eigen-mode disturbance near the
pipe inlet and the upstream propagation of this disturbance.

This inviscid instability mechanism is strongly related to the critical-state concept
of Benjamin (1962). However, it should be pointed out that in the case of a swirling
flow in an infinitely long pipe, such an exchange of stability around the critical
state does not exist since the waves are free to propagate both upstream and down-
stream and there is no interaction between the waves moving upstream and the inlet
conditions. For example, in the case of a solid-body rotating flow with a uniform
axial velocity component in an infinitely long pipe Rayleigh’s (1916) classical stability
criterion predicts that the flow is stable to any axisymmetric disturbance for any
swirl level, whereas the analytical solutions presented in Wang & Rusak (1996a) have
demonstrated that such a flow in a finite-length pipe changes its stability character-
istics as the swirl changes around the critical level of swirl ω1 of that flow. When
ω > ω1 the solid-body rotating flow with a uniform axial velocity component is
unstable.

9. Mechanism leading to the axisymmetric vortex breakdown in a pipe
The bifurcation diagram and the stability results are now used to explain the

development in time of a swirling flow described by (1)–(5). Although not yet
rigorously proven, it is strongly expected that the stability results of Wang & Rusak
(1996a, b) near the critical state can be extended to the entire branches, i.e. the branches
of local and global minimizer solutions are supercritical states (this results from
the relevant eigenvalue problem) and asymptotically linearly stable to axisymmetric
disturbances. On the other hand, the branches of min-max solutions are unstable (see
figure 15). Moreover, the above results may indicate that the branch of columnar flow
solutions is unconditionally stable to any axisymmetric disturbance when ω < ω0.
This means that, for this range of swirl, any axisymmetric disturbance to a base
columnar flow will decay in time and the flow will return to a columnar state.

In the range of incoming swirl ω0 < ω < ω1 two steady-state solutions co-exist:
one is a local minimizer solution that describes a columnar swirling flow all along the
pipe and the other is a global minimizer solution that describes a swirling flow with
a large stagnation zone. Both solutions are stable to small, but finite, axisymmetric
disturbances. The two branches of solutions are connected by a branch of min-max
solutions that are unstable. This suggests that in the range ω0 < ω < ω1 there exist
two basins of attraction. Which of the two solutions is actually realized depends on
the initial disturbances to the base columnar flow. When the initial disturbances are
relatively small they will decay in time and the flow will return to a columnar state all
along the pipe. However, when the initial disturbances are relatively large they will
evolve in time in a complicated nonlinear dynamical process into large disturbances.
These will propagate upstream, interact with the inlet state and develop into the
vortex breakdown state described by the global minimizer solution.

In the range ω > ω1 the equilibrium columnar flow state is unstable and it is
expected to be absolutely unstable. Therefore, any axisymmetric disturbance will grow
in time through the instability mechanism that depends on the upstream propagation
of waves, described in §8. In this range of relatively large incoming swirl it is expected
that the global minimizer solution is a strong attractor. Then, the flow again will evolve
nonlinearly, with large disturbance waves that propagate upstream and interact with
the inlet state. The flow will develop from a columnar state into the vortex breakdown
state described by the global minimizer solution.
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Our recent numerical simulations based on the time-dependent equations (1)–(5)
for a base flow described by the Burgers vortex model (36) fully demonstrate the
above results (see Rusak et al. 1996). As predicted by this study, we observe the
stability of supercritical states and the instability of subcritical states to axisymmetric
disturbances. We also observe the unconditional stability of columnar swirling flows
when ω < ω0, the two basins of attraction in the range ω0 < ω < ω1 and the
strong dependence on initial disturbances in this range of swirl, and the absolute
instability of columnar swirling flows when ω > ω1. The simulations based on the
unsteady and axisymmetric Euler equations also show that in the range ω > ω0,
the flow always evolves into a steady-state solution and a stagnation zone is always
naturally established once the flow evolves into the global minimizer breakdown
solution.

The computations in Rusak et al. (1996) show that the flow state at ω1 is a critical
state for infinitesimal axisymmetric disturbances (as originally suggested by Benjamin
1962) whereas the flow state at ω0 is a critical state for large-amplitude disturbances.
This means that infinitesimal axisymmetric disturbances can propagate upstream
only when ω > ω1 whereas large-amplitude disturbances can propagate upstream
only when ω > ω0. The computations also demonstrate the relation between the
upstream propagation of the disturbances in a swirling flow, their interaction with
the inlet state and the development of the axisymmetric vortex breakdown.

The above results shed new light on the physical mechanism leading to the axisym-
metric vortex breakdown phenomenon in high-Reynolds-number swirling flows in a
pipe. As the swirl along the inlet of the pipe is increased toward the critical level ω1,
the base columnar vortex flow tends to lose its stability margin and, definitely, above
the critical level, it is unstable. Therefore, when the incoming flow has a swirl level
ω > ω0, that is near or above the critical swirl ω1, small axisymmetric disturbances
propagate upstream and evolve into large disturbances that interact with the inlet
state and become trapped. The flow will dynamically evolve from a columnar state to
another axisymmetric equilibrium state that has a separation zone and is described
by the global minimizer solution.

10. Effect of small viscosity
The inviscid analysis described above indicates the importance of the critical swirl

as a transcritical bifurcation point of steady-state solutions and as a point of exchange
of stability. The transcritical bifurcation of the steady-state solutions is a structurally
unstable bifurcation, i.e. once small corrections such as small viscous effects are
introduced to the steady-state equations the nature of the bifurcation diagram near
the critical state may change.

In a recent paper Wang & Rusak (1997) studied the corrections to the inviscid
bifurcation diagram due to the existence of small viscosity. Asymptotic techniques
were used in the limit where the viscosity tends to zero. Wang & Rusak (1997)
demonstrated the singular behaviour of solutions of the Navier–Stokes equations
around the critical swirl, ω1, and provided an explanation of Hall’s (1967) boundary
layer separation analogy to vortex breakdown. They also showed that the invis-
cid transcritical bifurcation diagram described in figure 14 indeed breaks into two
branches of solutions. Two saddle fold bifurcation points of solutions of the axi-
symmetric Navier–Stokes equations exist from both sides of the critical swirl, ωcν1
and ωcν2, where ωcν1 = ω1 − Cν1/2 and ωcν2 = ω1 + Cν1/2. Here C is a constant
that can be calculated from the characteristics of the base columnar swirling flow
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Figure 16. The bifurcation diagram and stability characteristics for high-Reynolds-number
swirling flows.

(see figure 16). Compared with the inviscid analysis we find that the branch of near
columnar flows due to viscosity correction is connected with the branch of min-max
solutions with viscosity correction when ω < ωcν1. The branch of local minimizer
solutions with viscosity correction is connected with the branch of near columnar
flow solutions with viscosity correction when ω > ωcν2. It is now clear that the
bifurcation diagram obtained by Beran & Culick (1992) matches with only one of
the branches resulting from our viscous analysis. Actually, Beran & Culick (1992)
searched for the steady-state axisymmetric solutions along a branch that starts from
a state with zero swirl. According to our analysis it is clear that there exists one more
branch of steady-state axisymmetric solutions of the Navier–Stokes equations when
ω > ωcν2 and that was not found by the continuation method of Beran & Culick
(1992).

The recent numerical simulations of Lopez (1994) and Beran (1994) extended the
work of Beran & Culick (1992). Based on simulations of swirling flows in a pipe using
the unsteady and axisymmetric Navier–Stokes equations they demonstrated that when
the Reynolds number is sufficiently large there exist two branches of stable solutions:
one that describes an almost columnar flow and another that describes a breakdown
solution, and both are part of one branch with a fold, the part of the branch in
the fold being unstable. These numerical results show that for high-Reynolds-number
flows the stability characteristics of the various branches of solutions of the Navier–
Stokes equations are directly inherited from the inviscid mechanism as described in
§8.

Moreover, the branch of solutions when ω > ωcν2, that is missing in the bifurcation
diagram of Beran & Culick (1992), may also inherit the stability characteristics
of the corresponding inviscid solutions. Therefore, it is expected that the viscosity-
corrected columnar swirling flows with ω > ωcν2 are unstable (see figure 16). We
find in this way that the structurally unstable bifurcation of inviscid steady solutions
at the critical swirl ω1 coincides with the exchange of dynamical stability at ω1.
However, the structurally unstable bifurcation will still indicate the existence of a
steady near columnar flow solution when the incoming flow is subcritical (ω > ω1),
specifically when ω is larger than ω1. Such a steady solution cannot be accessed
by a dynamical process since stability analysis indicates that it is linearly unstable.
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In this way, it is the dynamical stability characteristics of solutions that play the
essential role in explaining the mechanism leading to the vortex breakdown in a
pipe and not the structurally unstable bifurcation of inviscid solutions at the critical
swirl.

It should be pointed out that the numerical simulations of Lopez (1994) using
the axisymmetric time-dependent Navier–Stokes equations also show that for suf-
ficiently large-Reynolds-number swirling flows the separation zones in breakdown
solutions are large and essentially stagnant. These are similar in nature to those
found in our inviscid computations. We strongly believe that the branch of break-
down solutions described by Beran & Culick (1992) and Lopez (1994) when the
Reynolds number is large enough are global minimizer solutions with viscosity cor-
rection. Moreover, the size of the separation zones in the viscous computations is
comparable to those predicted by our analysis. Based on his numerical simulations
Lopez (1994) also suggested that the viscous dissipation is responsible for closing
the separation zone and this is not due to the downstream boundary condition.
This suggests that in the inviscid limit the bubble will become longer and an open
separation zone will appear, as results from our inviscid approach. Furthermore,
Lopez (1994) showed that the level of swirl above which breakdown solutions can
be found (his secondary limit point) for an inlet Burgers vortex (36) with β = 4.0
tends to a certain limit value 1.466 as the Reynolds number is increased. Using
our method of computing ω0 (see §3.3 and figure 7) we find that the threshold
value for the appearance of inviscid breakdown solutions, in the geometrical scale of
Lopez’s (1994) computations, is 1.461 which is in good agreement with the viscous
computations.

The above discussion suggests that our inviscid approach based on (1)–(5) is the
inviscid-limit theory of the axisymmetric and viscous flow problem. When the viscosity
is small the present theory describes a dynamical behaviour of axisymmetric swirling
flows in a pipe that is close to that computed by Beran & Culick (1992) and Lopez
(1994). However, it is expected that when the viscosity is much larger, the viscous
effects may change the entire dynamical behaviour. Specifically, ωcν1 and ω0 will
coincide, the fold in the bifurcation diagram in figure 16 will be eliminated and
only one branch of steady-state solutions will appear. This was actually described by
Beran & Culick (1992) and Lopez (1994) for relatively low-Reynolds-number flows.
The dynamical behaviour of low-Reynolds-number swirling flows is qualitatively
different from the high-Reynolds-number case. The exchange of stability related to
the critical swirl is lost when the viscous effects are strong. In such cases the evolution
in time from one state to another does not exist and the breakdown zone will appear
and grow in size in a continuous process as the incoming swirl is increased. Large-
viscosity effects will also result in closing the separation zone after a relatively short
distance from the nose of the zone and in the creation of an internal recirculation
flow in the zone through the diffusion of momentum from the outer flow into the
separation zone.

11. Discussion
We study in this paper the dynamics of inviscid and incompressible axisymmetric

swirling flows in a finite-length pipe described by the Euler equations (1) and (2) with
the boundary conditions (3) and (4) and the initial conditions (5). This theoretical
model may represent a physical situation of a flow in a pipe as is found in some
experiments. The analysis is based on studying the flow stability characteristics and
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the long-time dynamics of the flow as it is related to steady-state solutions of
the problem. Under this framework we provide a theoretical understanding of the
dynamics of axisymmetric swirling flows in a pipe.

We summarize the major results found in our analysis. There exist two characteristic
swirl levels of the incoming flow to the pipe, ω0 and ω1, where ω0 < ω1, and both can
be determined by solving ODE problems. Swirling columnar flows with a swirl level
less than the threshold level ω0(< ω1) are unconditionally stable to any axisymmetric
disturbance. In the range ω0 < ω < ω1 we find that, starting from initial disturbances,
the flow may evolve into one of two distinct steady states, depending on the size of
the initial disturbances. When the disturbances are sufficiently small they will decay
in time and the flow will return to a columnar state. However, when the initial
disturbances are large enough, they will grow in time and evolve nonlinearly into a
large stagnation region in the swirling flow. When ω > ω1, the initial disturbances
always grow and evolve again into a vortex breakdown solution. Those results
clarify the mechanism leading to the axisymmetric vortex breakdown phenomenon
in high-Reynolds-number swirling flows. As the incoming swirl level is increased
above ω0, and is near or above ω1, the columnar swirling flow loses its stability and
develops into a breakdown state. This mechanism is governed by the propagation of
small- and large-amplitude disturbances in the pipe and its interaction with the inlet
conditions.

Our recent numerical computations, guided by the present study, confirm the pre-
dicted results and provide details of the nonlinear dynamics of the flow (see Rusak
et al. 1996). The study also shows good agreement with the numerical computations
of Beran & Culick (1992), Beran (1994) and Lopez (1994) using the axisymmetric
Navier–Stokes equations when the Reynolds number is sufficiently large. The good
agreement suggests that the present approach based on the Euler equations is the
inviscid-limit theory of the axisymmetric and viscous flow problem. Our recent ex-
periments guided by the present study (see Malkiel et al. 1996) demonstrate the loss
of stability of a columnar state and the development in time of the breakdown state.
Moreover, the experiments of Malkiel et al. (1996) verify the existence of the two
limit points of swirl and the existence of two stable and steady states, one of a near
columnar flow and the other of a breakdown state, for the same inlet conditions
when the swirl level is between the two limit points. The experiments also show
the appearance of a breakdown state when the inlet swirl level is above the critical
swirl.

This present model explains the suddenness of the vortex breakdown phenomena,
specifically around ω0 where a large disturbance to the basic flow may occur for the
first time as the incoming swirl is increased, the abrupt nature of the phenomena due
to the development of breakdown zones in the flow, as well as the non-uniqueness of
the phenomena in high-Reynolds-number flows, related to the process of increasing
the incoming swirl. All of these characteristics are similar to those found in the
experiments of Sarpkaya (1971, 1995), Leibovich (1978, 1984) and Bruecker & Althaus
(1995) where axisymmetric breakdown zones were found. Also, as demonstrated in
figure 14, the present approach connects most of the previously suggested models of
vortex breakdown and provides guidelines for future numerical simulations of and
experiments on these complicated phenomena.

The present study is limited to inviscid and axisymmetric swirling flows and does
not consider the vortex generation mechanism and its interaction with the vortex
breakdown phenomenon. Specifically, we would like to point out that the unsteady
and axisymmetric problem (1)–(5) has solutions that always evolve into a supercritical
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steady-state that is stable to axisymmetric disturbances. However, such steady-state
solutions may not necessarily be stable to non-axisymmetric disturbances. If these
steady states are unstable to three-dimensional disturbances it is likely that unsteady
vortical flows will develop and never settle to a steady state. We believe that in order to
study such swirling flows with three-dimensional waves it would appear important to
extend our theoretical framework to investigate the development of three-dimensional
disturbances from the axisymmetric breakdown solution of our study. These studies
might result in more details of the flow dynamics and structure, and the possible
evolution of the spiral breakdown out of the axisymmetric breakdown as was found
in Bruecker & Althaus’s (1995) experiments.

This research was carried out with the support of the National Science Foundation
under Grant CTS-9310181. Partial support was also given by the US-Israel Binational
Science Foundation under Grant 94-00245/1.

Appendix A. Existence of global minimizer
A.1. Notation and functional space

Let Ωx0
= (0, x0)× (0, 1/2) where x0 is a positive number. Let

Lp(Ωx0
) =

{
f : Ωx0

→ f, f is measurable,

∫ x0

0

∫ 1/2

0

|f|pdydx < +∞
}

with 1 6 p 6 ∞, and

||f||Lp(Ωx0
) =

(∫ x0

0

∫ 1/2

0

|f|pdydx

)1/p

.

Let

W 1,p(Ωx0
) =

{
f : f ∈ Lp(Ωx0

) and

∫ x0

0

∫ 1/2

0

(|fy|p + |fx|p)dydx bounded

}
, 1 6 p 6 ∞,

be the usual Sobolev space with the norm

||f||W 1,p(Ωx0
) =

(∫ x0

0

∫ 1/2

0

(|f|p + |fy|p + |fx|p)dydx

)1/p

.

Let W 1,p(Ωx0
, 1/y) be the weighted Sobolev space

W 1,p

(
Ωx0

,
1

y

)
=

{
f : f ∈Lp(Ωx0

) and

∫ x0

0

∫ 1/2

0

(
|fy|p+

|fx|p
y

)
dydx<∞

}
, 16 p<∞

and

||f||W 1,p(Ωx0
,1/y) =

(∫ x0

0

∫ 1/2

0

(
|fy|p +

|fx|p
y

+ |f|p
)

dydx

)1/p

.

Set

C∞b (Ωx0
) = {f ∈ C∞(Ωx0

) : f(0, y) = ψ0(y), f(x, 0) = 0 and f(x, 1/2) = w0}
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and let

W
1,p
b (Ωx0

) = the closure of C∞b (Ωx0
) in W 1,p(Ωx0

)

and

W
1,p
b (Ωx0

, 1/y) = the closure of C∞b (Ωx0
) in W 1,p(Ωx0

, 1/y).

A.2. Existence

We seek the following minimizer:

min
ψ∈W 1,p

b
(Ωx0

,1/y)

E(ψ). (A 1)

The global minimizer (A 1), if it exists, denoted by ψg(x, y), is a weak solution of (6)
and (7), i.e. ∫ x0

0

∫ 1/2

0

(
ψgyφy +

ψgxφx

2y
+H ′(ψg)φ−

I ′(ψg)φ

2y

)
dydx = 0 (A 2)

for all φ such that (ψg +φ) ∈W 1,p
b (Ωx0

, 1/y). We state the following general existence
result:

Theorem A.1. Suppose
1. H(ψ) and I(ψ) are bounded and piecewise smooth non-negative functions with

bounded first derivatives;
2. I(ψ) 6 c|ψ|p where p is a fixed number, 1 < p 6 2, and c > 0;

then, the global minimizer of (A 1) exists.

The following Hardy’s inequality is crucial in our proof of this theorem:

Lemma A.1. (Hardy’s inequality, see for example Kufner 1983)
Let 1 < p < ∞, u ∈ C1[0, x0] with u(0) = 0 and∫ x0

0

|u′(t)|pdt < ∞

then, we have ∫ x0

0

|u(t)|pt−pdt 6
(

p

p− 1

)p ∫ x0

0

|u′(t)|pdt. (A 3)

Proof of Theorem A.1. First, we show that the functional E(ψ) is bounded from
below for any ψ ∈W 1,2

b (Ωx0
, 1/y). From the boundness of H(ψ), we immediately have

0 <

∫ x0

0

∫ 1/2

0

H(ψ)dydx < m1. (A 4)

Let 0 < yδ < 1/2 and for any ψ ∈ C∞b (Ωx0
), we have∫ x0

0

∫ yδ

0

∣∣∣∣I(ψ)

y

∣∣∣∣ dydx 6 c

∫ x0

0

∫ yδ

0

|ψ|p
y

dydx (from assumption 2)

6 cyp−1
δ

∫ x0

0

∫ yδ

0

|ψ|p
yp

dydx (since y 6 yδ)

6 cyp−1
δ

(
p

p− 1

)p ∫ x0

0

∫ yδ

0

|ψy|pdy (Hardy’s inequality). (A 5)
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The above inequality can be extended to the whole space W
1,2
b (Ωx0

). From the
boundness of I(ψ), we have

0 <

∫ x0

0

∫ 1/2

yδ

I(ψ)

2y
dydx 6 myδ (A 6)

where myδ depends on yδ .
We now estimate E(ψ) (equation (8)) as follows:

E(ψ) >

∫ x0

0

∫ 1/2

0

(
ψ2
y

2
+
ψ2
x

4y

)
dydx−

∫ x0

0

∫ yδ

0

I(ψ)

2y
− myδdydx

(from (A 4) and (A 6))

>

∫ x0

0

∫ 1/2

0

(
ψ2
y

2
+
ψ2
x

4y

)
dydx− c

(
p

p− 1

)p
y
p−1
δ

∫ x0

0

∫ yδ

0

|ψy|pdydx− myδ

(from (A 5))

>
1

4

∫ x0

0

∫ 1/2

0

(ψ2
y +ψ2

x)dydx−c
(

p

p−1

)p
y
p−1
δ |Ωx0

|(2−p)/2
(∫ x0

0

∫ 1/2

0

ψ2
ydydx

)p/2
− myδ

(from Hölder inequality and where |Ωx0
| is the volume of Ωx0

)

>

(
1

4
− cyδ

)∫ x0

0

∫ 1/2

0

(ψ2
y + ψ2

x)dydx− myδ − cyδ

(from (
∫ x0

0

∫ 1/2

0
ψ2
ydydx)p/2 6

∫ x0

0

∫ 1/2

0
ψ2
ydydx+ 1 and where

cyδ = c(p/(p− 1))pyp−1
δ |Ωx0

|(2−p)/2)
> −mỹδ − cỹδ = m, (A 7)

where we fix yδ = ỹδ such that cỹδ <
1
4
. The boundness of E(ψ) from below on

W
1,p
b (Ωx0

, 1/y) is proven.

From boundness of H(ψ) and I(ψ), E(ψ) is finite for any ψ ∈ W 1,p
b (Ωx0

, 1/y) and

therefore inf E(ψ) is finite. Let {ψi}, where {ψi} ∈ W 1,p
b (Ωx0

, 1/y) be the minimizing
sequence, i.e.

E(ψi)→ inf
ψ∈W 1,p

b
(Ωx0

,1/y)

E(ψ).

From (A 7), ∫ x0

0

∫ 1/2

0

(
ψ2
iy

2
+
ψ2
ix

4y

)
dydx < ∞,

and ∫ x0

0

∫ 1/2

0

I(ψ)

2y
dydx < ∞.

By virtue of some variant of the Poincaré inequality (see, for example, Ziemer 1989)

||ψi||W 1,2

b
(Ωx0

,1/y) < ∞.

Then, there exists a subsequence of {ψi}, still denoted by {ψi}, such that

ψi ⇀ ψg weakly in W 1,2
b (Ωx0

, 1/y), (A 8)
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and

ψi → ψg strongly in Lp(Ωx0
), 1 6 p < ∞. (A 9)

We claim

E(ψg) = inf
ψ∈W 1,2

b
(Ωx0

,1/y)

E(ψ). (A 10)

The following inequality is well known (see, for example, Struwe 1990):

lim
i→∞

∫ x0

0

∫ 1/2

0

(
ψ2
iy

2
+
ψ2
ix

4y

)
dydx >

∫ x0

0

∫ 1/2

0

(
ψ2
gy

2
+
ψ2
gx

4y

)
dydx. (A 11)

From (A 9) we have∫ x0

0

∫ 1/2

0

H(ψi)dydx→
∫ x0

0

∫ 1/2

0

H(ψg)dydx as i→∞. (A 12)

We now estimate the term
∫ x0

0

∫ 1/2

0
I(ψi)/2y dydx as follows:

lim
i→∞

(∫ x0

0

∫ 1/2

0

I(ψi)

2y
dydx−

∫ x0

0

∫ 1/2

0

I(ψg)

2y
dydx

)

= lim
i→∞

(∫ x0

0

∫ 1/2

yδ

(
I(ψi)

2y
− I(ψg)

2y

)
dydx

)
+ lim

i→∞

∫ x0

0

∫ yδ

0

(
I(ψi)

2y
− I(ψg)

2y

)
dydx

(here 0 < yδ < 1, and the first limit vanishes from (A 9))

= lim
i→∞

∫ x0

0

∫ yδ

0

(
I(ψi)

2y
− I(ψg)

2y

)
dydx

6 lim
i→∞

(
cyδ

∫ x0

0

∫ yδ

0

|ψiy|2dydx−
∫ x0

0

∫ yδ

0

I(ψg)

2y
dydx

)
(from (A 7))

6 cyδM −
∫ x0

0

∫ yδ

0

I(ψg)

2y
dydx

(
from (A 7),

∫ x0

0

∫ 1/2

0

|ψiy|2dydx is bounded

)
.

(A 13)

Here M > 0 is a constant. Combining (A 11), (A 12) and (A 13), we obtain

inf
ψ∈W 1,2

b
(Ωx0

,1/y)

E(ψ) = lim
i→∞
E(ψi)

> E(ψg)− cyδM +

∫ x0

0

∫ yδ

0

I(ψg)

2y
dydx

> E(ψg)− cyδM.

Let yδ → 0, then cyδM → 0 and

inf
ψ∈W 1,2

b
(Ωx0

,1/y)

E(ψ) > E(ψg).

However, we must have E(ψg) > infψ∈W 1,2

b
(Ωx0

,1/y) E(ψ) and therefore we find that

E(ψg) = infψ∈W 1,2

b
(Ωx0

,1/y) E(ψ). So ψg is the global minimizer of E(ψ).

Note the regularity of ψg(x, y): ψg(x, y) is a weak solution of (6) and (7) as
mentioned at the beginning of this section. Let Ωo be any domain such that Ω̄o ⊂ Ωx0

;



The dynamics of swirling flow in a pipe 215

we show that ψg ∈ C2−δ(Ωo) for any δ > 0. Actually, from the boundness and
piecewise continuity of H ′(ψ) and I ′(ψ), we have

H ′(ψg)−
I ′(ψg)

2y
∈ Lp(Ωo), 1 6 p < ∞

and by using elliptic regularity theory (see, for example, Gilbarg & Trudinger 1983),
we have

ψg ∈W 2,p(Ωo) for 1 6 p < ∞
and then

ψg ∈ C2−2/p(Ωo) (A 14)

from the Sobolev embedding W 2,p(Ωo, 1/y) ↪→ C2−2/p(Ωo) (see, for example, Adams
1975). Thus, derivatives of ψg are everywhere continuous functions on Ωx0

whether
H ′(ψ) and I ′(ψ) are continuous or not. From the Hölder estimate, at any regular
point of H ′(ψ) and I ′(ψ) we find that ψg(x, y) is twice differentiable and is a regular
solution of (6) and (7).

Appendix B. Properties of global minimizer
Let

W 1,2(0, 1/2) =

{
ψ ∈ L2((0, 1/2)) :

∫ 1/2

0

ψ2
ydy is bounded

}
with the norm

||ψ||W 1,2(0,1/2) =

(∫ 1/2

0

(ψ2 + ψ2
y)dy

)1/2

.

Also, let

C∞b (0, 1/2) = {ψ ∈ C∞(0, 1/2) : ψ(0) = 0, ψ(1/2) = w0}

and

W
1,2
b (0, 1/2) = the closure of C∞b (0, 1/2) in W 1,2(0, 1/2).

We consider the following eigenvalue problem:

ψyy −
(
H ′′(ψ̃)− I ′′(ψ̃)

2y

)
ψ + λψ = 0,

ψ(0) = ψ(1/2) = 0,

 (B 1)

which is related to the linearized SLE in the columnar case. It is a well known fact
(see, for example, Courant & Hilbert 1953) that when the smallest eigenvalue of this
eigenvalue problem is positive then the following estimate of E(ψ):

E(ψ̃ + ψ)− E(ψ̃) > C||ψ||2
W

1,2

b
(0,1/2)

(B 2)

with C > 0, holds for every ψ with ||ψ||W 1,2

b
(0,1/2) < δ, where δ is a positive number.

Equation (B 2) shows that when the smallest eigenvalue of the problem (B 1) is positive
ψ̃ is a strict minimizer of E(ψ). It is important to notice that for vortex flows of
interest such as the Rankine vortex model (given by (18) and (19)) and the Burgers
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vortex model (given by (34) and (35)) equation (B 2) always holds for the global
minimizer solution of the columnar problem.

Theorem B.1. Suppose ψs(y) is a strictly local minimizer of E(ψ) and the estimate
given by (B 2) holds around ψs(y). Let Gε with ε > 0 be the set

Gε = {x ∈ (0, x0) : ||ψ(x, y)− ψs(y)||C1/2(0,1/2) > ε} (B 3)

then, we have the following estimate of ‘length’ of Gε

m(Gε) < Lε (B 4)

where Lε does not depend on x0, the length of the pipe, and m(Gε) denotes the measure
of Gε.

Here C1/2(0, 1/2) is the Hölder space with the norm

sup
y1 ,y2∈(0,1/2),y1 6=y2

|ψ(y1)− ψ(y2)|
|y1 − y2|1/2

.

Proof. Let ψc(x, y) be the comparison function

ψc(x, y) =

{
ψ0(y)(1− x) + xψs(y) when 0 6 x 6 1,
ψs(y) when 1 6 x 6 x0.

Here, ψ0(y) is the inlet flow and ψs is the columnar minimizer of E(ψ). Obviously,
ψc ∈W 1,2

b (Ωx0
, 1/y) and

E(ψc) = c+ (x0 − 1)E(ψs) (B 5)

where

c =

∫ 1

0

∫ 1/2

0

(
ψ2
cy

2
+
ψ2
cx

4y
+H(ψc)−

I(ψc)

2y

)
dydx

and we always have c > E(ψs) > 0.
For the global minimizer ψg of E(ψ), we have from the definitions of ψg and ψc

E(ψc) > E(ψg) > x0E(ψs). (B 6)

Combining (B 5) and (B 6), we obtain the following:

E(ψg)− x0E(ψs) 6 c− E(ψs). (B 7)

From the definition of E(ψ), we find

E(ψg)

x0

>
1

x0

∫ x0

0

∫ 1/2

0

(
ψ2
gy

2
+H(ψg)−

I(ψg)

2y

)
dydx

and from (B 7), we obtain∫ x0

0

∫ 1/2

0

(
ψ2
gy

2
+H(ψg)−

I(ψg)

2y

)
dydx− x0E(ψs) 6 c− E(ψs). (B 8)

Let K(x) be the function

K(x) = E(ψg(x, y)), where x is fixed as we calculate E(ψg(x, y)) according to (11),

and Tδ , with δ > 0, be the set

Tδ = {x ∈ (0, a) : K(x)− E(ψs) > δ}. (B 9)
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From (B 8), we have

δ m (Tδ) 6

∫
Tδ

(K(x)− E(ψs))dx 6

∫ x0

0

(K(x)− E(ψs))dx 6 c− E(ψs). (B 10)

Then,

m (Tδ) 6
c− E(ψs)

δ
. (B 11)

From the estimate (B 11) and Sobolev embedding W 1,2
b (0, 1/2) ↪→ C1/2(0, 1/2), for any

given ε > 0, we may find a δ(ε), that depends on ε, such that

Gε ⊂ Tδ
and, therefore,

m (Gε) 6
c− E(ψs)

δ(ε)
.

If Lε = (c− E(ψs))/δ(ε), we obtain (B 4) and the theorem is proven.

Comment: The proof of Theorem B.1 is general for any inlet flow ψ0(y) and is
not limited to the assumption that inlet flow is described by the Rankine or Burgers
vortex models.

Appendix C. Existence of min-max solution
We consider the case where ω0 < ω 6 ω1. We shall show that there exists a third

solution of the SLE which is not a minimizer (global or local) of E(ψ). Therefore,
a traditional variational approach would not work in the search of this type of
stationary point. New methods from non-traditional variational calculus and global
analysis are needed. The following theorem known as the ‘Mountain Pass theorem’ is
our main tool in the proof of existence of the third solution of (6) and (7).

Theorem C.1. (The Mountain Pass Theorem) (see, for example, Struwe 1990)
Let V be a Banach space and suppose that the functional F(v) is defined on V ,

F(v) ∈ C1(V ) and satisfies
(a) there exist γ > 0, α > 0 and v0 ∈ V such that

||v − v0|| = γ ⇒ F(v) > α+ F(v0); (C 1)

(b) there exists v1 ∈ V where ||v1|| > γ and

F(v1) < α+ F(v0); (C 2)

(c) the Palais–Smale condition, i.e. for any sequence {vi} with

F ′(vi)→ 0 in V ′ (dual space of V)

and
|F(vi)| is bounded

there exists a subsequence of {vik} such that

vik → v0 in V strongly.

Define the set of path P as

P = {path ∈ C0([0, 1], V ) : path(0) = v0 and path(1) = v1} (C 3)
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then

β = inf
path∈P

sup
t∈[0,1]

F(path(t)) (C 4)

is a stationary value of F(v).

In our case, we may take W 1,2
b (Ωx0

, 1/y) as V and E(ψ) = F(v). W 1,2
b (Ωx0

, 1/y) is
a closed affine subspace of the Hilbert space W 1,2(Ωx0

, 1/y) (and therefore a Banach

space) and E(ψ) ∈ C1(W 1,2
b (Ωx0

, 1/y)). We can verify the Palais–Smale condition for
E(ψ) by using Hardy’s inequality and Rellich–Kondrachov compactness theorem (see,
for example, Adams 1975). Therefore, in order to apply the Mountain pass theorem
to E(ψ), we need to verify that the assumptions (a) and (b) in the Theorem are also
satisfied.

Theorem C.2. When ω0 < ω < ω1, and the length of the pipe is sufficiently large,
there exist a solution ψM(x, y) of (6) and (7) which is obtained by the mountain pass
theorem and has a stationary value of E(ψ) determined by (C 4).

Proof. Let path(0) = ψ0(y) and path(1) = ψg .
Verification of assumption (a). The local behaviour of E(ψ) near the solution ψ0(y)

is determined by the eigenvalue problem: find φ such that

φyy +
φxx

2y
−
(
H ′′(ψ0)−

I ′′(ψ0)

2y

)
φ+ λφ = 0 where ψ0 + φ ∈W 1,2

b (Ωx0
, 1/y).

(C 5)

The above eigenvalue problem is an extension of (B 1) and when the smallest eigen-
value of (C 5) is positive, an estimate similar to (B 1) can be obtained:

E(ψ0 + ψ)− E(ψ0) > c||ψ||2W 1,2

b
(Ωx0

,1/y)
for ||ψ||W 1,2

b
(Ωx0

,1/y) 6 δ (C 6)

where δ > 0 is a constant. Let γ = δ and α = cδ2 we obtain assumption (a) from
(C 6).

From the definition of the critical swirl ω1 (see §5) it is clear that when ω < ω1,
the smallest eigenvalue of (C 5) is always positive.

Verification of assumption (b). We have the following estimate from Theorem C.1

E(ψg)

x0

∼ E(ψs) for large x0. (C 7)

Then,

E(ψ0)

x0

= E(ψ0) > E(ψs) ∼
E(ψg)

x0

(C 8)

where ψs(y) is the global minimizer of the columnar functional E(ψ) and (b) follows
from (C 8) and assumption (a).

We have verified all the conditions in the mountain pass theorem. Therefore, there
exists a third solution of (6) and (7) denoted as ψM(x, y), which is a min-max point of
E(ψ) and is characterized by (C 4). Figure 11 illustrates the existence of the min-max
solution ψM between the minimizer solutions ψ0 and ψg . We see that there exists a
path from ψ0 and ψg where at the top of the path, we find the solution ψM .
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Appendix D. Properties of the min-max solution ψM(x, y)

The solution ψM(x, y) is obtained in a rather abstract frame. We need to discuss
this solution in more detail. We first show the following basic estimate

Theorem D.1.

E(ψM)

E(ψ0)
→ 1 as x0 →∞, (D 1)

where x0 is the length of the pipe.

Proof. Let ψMx01
be the mountain pass solution for Ωx01

where x01 is a pipe length
that is different from x0. Let path(t) be a path which satisfies

E(ψMx01
) 6 max

t∈[0,1]
E(path(t)) < E(ψMx01

) + ε. (D 2)

According to Theorem C.1, such a path always exists when ω0 < ω < ω1. Now, for
Ωx01

with x0 > x01, we construct the following path:

p̃ath(t) =

{
ψ0 when 0 < x < x0 − x01,
path(t)(x− (x0 − x01)), y) when x0 − x01 6 x 6 x0.

(D 3)

Notice that when x0−x01 6 x 6 x0, 0 6 x−(x0−x01) 6 x0 thus path(t)(x−(x0−x01), y)
is well defined. Clearly, p̃ath(0) = ψ0 on Ωx0

and E(p̃ath(0)) 6 E(p̃ath(1)) from the fact
that E(path(1)) 6 E(path(0)). Therefore, p̃ath(t) is an eligible path. Denote ψMx0

as the
mountain pass solution for Ωx0

. Then, from (D 2) we find

E(ψMx0
) 6 max

t∈[0,1]
E(p̃ath(t)) = (x0 − x01)E(ψ0) + max

t∈[0,1]
E(path(t))

6 (x0 − x01)E(ψ0) + E(ψMx01
) + ε. (D 4)

Dividing (D 4) by E(ψ0), we have

E(ψMx0
)

E(ψ0)
=
E(ψMx0

)

x0E(ψ0)
6

(
1− x01

x0

)
+
E(ψMx01

)

x0E(ψ0)
+ ε.

Now let x0 → ∞, we get E(ψMx0
)/E(ψ0) 6 1. However, since E(ψ0) < E(ψMx0

), we
obtain (D 1).

We now compare the behaviour of the min-max solution ψM(x, y) with that of the
global minimizer solution ψg(x, y). As we have seen in Theorem B 1, we can estimate
E(ψg)/x0 ∼ E(ψs) as x0 tends to infinity. From this estimate we can demonstrate that
the solution ψg(x, y) is dominated, except for a finite transition region near the pipe
inlet, by a long region where the flow is close to the columnar state ψs(y) (see figure
8). However, the estimate in Theorem D 1 that E(ψM)/x0 ∼ E(ψ0) as x0 tends to
infinity, shows that the min-max solution is dominated by a long region, starting from
the inlet, where the flow is close to the columnar state ψ0(y) (see figure 12). From the
inlet condition ψM(0, y) = ψ0(y) we find that ψMx(0, y) is small and when x0 → ∞ it
vanishes. Therefore, a columnar state is established at the inlet when x0 →∞.

Let ψm = ψM(x0, y). Then, from the flow force balance (15) we find that as the pipe

length becomes larger, E(ψ0) −
∫ 1/2

0
(ψ2

Mx(0, y)/4y)dy = E(ψm(y)). Thus, E(ψm(y)) is
slightly less than E(ψ0) and so ψm(y) is not close to a columnar solution of (9) and
(10), except when ω tends to ω0, where ψm(y) tends to ψK(y).

We now describe the min-max solution ψM(x, y) of (6) and (7) (see figure 12). At
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0

ψ0(y)

ψ = 0
x

y

x0

ψx0a
(x, y)

ψ = w0

ψm(y)

1
2

(a)

x0a

ω > ω0

0

ψ0(y)

ψ = 0
x

y

x0

ψx0b
(x, y)

ψ = w0

ψM(x0–x0b, y)

1
2

(b)

x0b

ω > ω0

Figure 17. The comparison functions (a) ψx0a
(x, y), (b) ψx0b

(x, y).

0

ψ0(y)

x

y

x0

ψ = w0

ψK(y)

1
2

ψMψLψg
∼

Figure 18. The solution ψL, ψM and ψ̃g when ω ∼ ω0.

the inlet ψM(0, y) = ψ0. There exists x1 where for 0 6 x < x1, ψM is close to ψ0. For
x1 6 x < x0, a transition stage from ψ0 to ψm is established.

Let us demonstrate that the solution ψM(x, y) described above and in figure 12 is
the min-max solution. We choose two families of comparison functions ψx0a

and ψx0b
.

(i) The function ψx0a
is given by

ψx0a
(x, y) =

{
ψM(x+ x0 − x0a, y), 0 6 x 6 x0a,
ψm(y) x0a 6 x 6 x0,

(D 5)

where x0a < x0 is given, see figure 17(a). Since for any 0 6 x 6 x0, E(ψm) 6
E(ψM(x, y)) with x fixed, we find that E(ψM) > E(ψx0a

). Now, in the region x0a 6
x 6 x0 the columnar flow ψx0a

(x, y) = ψm(y) is neither a solution of the columnar
equation (6) nor the minimizer ψs of E(ψ). Thus, a path path(t) can be formed, with
path(0) = ψx0a

(x, y), such that we can push E(ψ) from E(path(0)) toward the global
minimizer ψg(x, y) of E(ψ).

(ii) The function ψx0b
(x, y) is given by

ψx0b
(x, y) =

{
ψ0(y) 0 6 x 6 x0b,
ψg(x− x0b, y) x0b 6 x 6 x0,

(D 6)

where x0b is given, see figure 17(b). As x0b increases ψx0b
(x, y)→ ψ0(y) everywhere in

Ωx0
. This is a path from ψM(x, y) to ψ0 and along this path E(ψx0b

) decreases since
for any x0b we find E(ψx0b

(x0, y)) > E(ψ0).
In summary, we find that, ψM(x, y) is a local maximum of E(ψ) along a special

direction. This is the feature of the min-max solution.
We now discuss the connection between the branch of min-max solutions ψM(x, y)

and the branch of the global minimizer solutions ψg(x, y) when ω is close to ω0. First
we again notice that for a finite-length pipe, ψ0 is the global minimizer of E(ψ) up
to ω0 + ε with ε > 0 and ε→ 0 as the length x0 of the pipe tends to ∞. At ω = ω0,
any transition along the pipe occurring in the base vortex will result in an increase in
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ψ0

ψM

ψg

%(ψ)
x0

ψL

ω1ω0

ψg = ψ0

ω
0 ω0 + ε

Figure 19. The bifurcation diagram of solutions of the SLE.

the value of E(ψ). Therefore, ψ0 is the global minimizer of E(ψ) also at ω = ω0. At
ω = ω0 + ε, the global minimizer switches from ψ0 to ψ̃g(x, y) which is the starting
point for the branch of solutions of (6) and (7) that are global minimizers of E(ψ)
when ω > ω0 + ε. The solution ψ̃g is shown in figure 18. When ω is slightly decreased
from ω0 + ε a branch of solutions ψL(x, y) of (6) and (7) that are local minimizers
of E(ψ) is obtained. This branch of solutions connects the global minimizer solution
ψ̃g(x, y) at ω0 + ε with the branch of min-max solution ψM(x, y) (see figure 19).

In order to better understand the branch of solutions ψL(x, y), we compare the
solutions ψ̃g(x, y) at ω0+ε, ψL(x, y) and ψM(x, y), see figure 18. In all of these solutions
the outlet flow is close to ψK(y) and, therefore, they all describe a similar transition
stage from ψ0 to ψK . As ω decreases from ω0 + ε the local minimizer ψL(x, y) of E(ψ)
describes an intermediate state between ψ̃g(x, y) and ψM(x, y) where the nose of the
stagnation zone moves downstream. Notice that the position of the zone nose is very
sensitive to very small changes of swirl ω slightly above ω0. This special behaviour is
also found in our recent computations (see Rusak et al. 1997).
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